During extravehicular activities (EVA) outside the spacecraft, astronauts have to work under reduced pressure in a space suit. This pressure reduction induces the risk of decompression sickness (DCS) by the formation of gas bubbles from excess nitrogen dissolved in the organism by breathing air at normal pressure. Under laboratory conditions the gas bubbles moving in the blood stream can be detected by the non-invasive ultrasonic Doppler method. By early detection of excessive bubble formation the development of DCS symptoms may be prevented by early application of preventative measures. The method could also be useful when applied in the space suit in order to compare the results of laboratory tests with operational results, because there is a discrepancy according to the DCS risk of laboratory experiments and actual EVA missions, where no symptoms have been reported yet. A prototype Doppler sensor has been developed and implemented in the Russian Orlan suit. To investigate the feasibility of this method under simulated space conditions, the equipment has been used in a series of 12 thermovacuum chamber tests with suited subjects, where intravenous bubble formation was compared to unsuited control experiments. In more than 50% of the suited tests good Doppler recordings could be achieved. In some cases with unsatisfying results the signal could be improved by breathholding. Although the results do not yet allow any conclusion about a possible difference between suited and unsuited subjects due to the small number of tests performed, the method proved its feasibility for use in EVA suits and should be further developed to enhance the safety of EVA procedures. 相似文献
The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field. 相似文献
The control of the body orientation and the center of mass position with respect to the feet was investigated under normo- and microgravity (space flight Altair), during erect posture and at the end of a forward or backward upper trunk movement.
It was observed that during erect posture, the trunk orientation with respect to the vertical was inclined some 6 ° forward in both subjects under microgravity, whereas it was vertical or slightly backward oriented under normogravity. Under microgravity, on the contrary, the initial position CM changed either backwards or forwards. This result suggests that the inclined trunk posture might be due to misevaluating the vertically under microgravity and that different control mechanisms are involved in orienting the trunk and placing the CM.
It was also noted that the final position of the CM at the end of the movement did not differ markedly between microgravity and normogravity. This result suggests that the kinematic synergies which stabilize the CM during uppertrunk movements may result from an automatic central control which is independent from the gravity constraints. 相似文献