首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8372篇
  免费   29篇
  国内免费   30篇
航空   4300篇
航天技术   2621篇
综合类   27篇
航天   1483篇
  2019年   50篇
  2018年   197篇
  2017年   160篇
  2016年   92篇
  2015年   50篇
  2014年   136篇
  2013年   192篇
  2012年   201篇
  2011年   354篇
  2010年   269篇
  2009年   385篇
  2008年   405篇
  2007年   320篇
  2006年   180篇
  2005年   251篇
  2004年   178篇
  2003年   238篇
  2002年   144篇
  2001年   254篇
  2000年   149篇
  1999年   182篇
  1998年   209篇
  1997年   154篇
  1996年   214篇
  1995年   269篇
  1994年   261篇
  1993年   147篇
  1992年   167篇
  1991年   95篇
  1990年   80篇
  1989年   195篇
  1988年   80篇
  1987年   82篇
  1986年   84篇
  1985年   248篇
  1984年   212篇
  1983年   169篇
  1982年   180篇
  1981年   242篇
  1980年   70篇
  1979年   59篇
  1978年   69篇
  1977年   70篇
  1975年   75篇
  1974年   55篇
  1973年   55篇
  1972年   63篇
  1971年   55篇
  1970年   57篇
  1969年   54篇
排序方式: 共有8431条查询结果,搜索用时 296 毫秒
231.
We present the results from a study of the variations of the cosmic-ray intensity with time, heliographic latitude, and longitude, and for varying interplanetary conditions, using our three-dimensional, time-dependent computer code for cosmic-ray transport in the heliosphere. Our code also produces a solar-wind and interplanetary magnetic field (IMF) configuration which is compared with observations. Because of the fully threedimensional nature of the model calculations, we are able to model time variations which would be expected to be observed along Ulysses's trajectory as it moves to high latitudes. In particular we can model the approximately 13-and 26-day solar-rotation induced variations in cosmic rays, solar wind and IMF, as a function of increasing heliographic latitude, as one moves poleward of the interplanetary current sheet. Our preliminary model results seem to be in general form quite similar to published data, but depend on the physical parameters used such as cosmic-ray diffusion coefficients, boundary conditions, and the nature of the solar wind and IMF and current sheet.  相似文献   
232.
It is shown that the errors associated with radio elevation measurements may be investigated systematically using a variational technique. The error occurring when spaced antennas are used is compared with that for a single directional antenna. Integral expressions are obtained for the refractive errors.  相似文献   
233.
The equations derived by A. J. Rainal for the probability density function of the angle error output of a monopulse radar excited by a Gaussian signal and Gaussian thermal noise are generalized to include the presence of multiple targets. The examples given demonstrate the radar's behavior for various combinations of target and noise parameters.  相似文献   
234.
Geiss  J.  Bühler  F.  Cerutti  H.  Eberhardt  P.  Filleux  Ch.  Meister  J.  Signer  P. 《Space Science Reviews》2004,110(3-4):307-335
Space Science Reviews - The Apollo Solar Wind Composition (SWC) experiment was designed to measure elemental and isotopic abundances of the light noble gases in the solar wind, and to investigate...  相似文献   
235.
Haines  K.  Hipkin  R.  Beggan  C.  Bingley  R.  Hernandez  F.  Holt  J.  Baker  T.  Bingham  R.J. 《Space Science Reviews》2003,108(1-2):205-216
Accurate local geoids derived from in situ gravity data will be valuable in the validation of GOCE results. In addition it will be a challenge to use GOCE data in an optimal way, in combination with in situ gravity, to produce better local geoid solutions. This paper discusses the derivation of a new geoid over the NW European shelf, and its comparison with both tide gauge and altimetric sea level data, and with data from ocean models. It is hoped that over the next few years local geoid methods such as these can be extended to cover larger areas and to incorporate both in situ and satellite measured gravity data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
236.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
237.
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological issues of cometary nuclei.  相似文献   
238.
Acceleration of the solar wind   总被引:2,自引:0,他引:2  
In this review, we discuss critically recent research on the acceleration of the solar wind, giving emphasis to high-speed solar wind streams emanating from solar coronal holes. We first explain why thermally driven wind models constrained by solar and interplanetary observations encounter substantial difficulties in explaining high speed streams. Then, through a general discussion of energy addition to the solar wind above the coronal base, we indicate a possible resolution of these difficulties. Finally, we consider the question of what role MHD waves might play in transporting energy through the solar atmosphere and depositing it in the solar wind, and we conclude by examining, in a simple way, the specific mechanism of solar wind acceleration by Alfvén waves and the related problem of accelerating massive stellar winds with Alfvén waves.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.On leave from the Auroral Observatory, Institute of Mathematical and Physical Sciences, University of Tromsø, N-9001 Tromsø, Norway.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
239.
The ATS-6 is the most advanced experimental satellite that has evolved from the Application Technology Satellite Program conducted and implemented by NASA Goddard Space Flight Center (NASA/GSFC). This project utilizes a state-of-the-art spacecraft and ground terminal network to perform advance studies and to conduct technological demonstrations in a large number of scientific areas. The design and implementation of this unique spacecraft permitted multiple experimentation simultaneously. The control of the spacecraft is performed at ATS Operational Control Center (ATSOCC) located at NASA/GSFC. Experimentation which was performed covered a wide spectrum of communications, technological, meterorological, and scientific subjects. Three principal ground terminals are utilized to assist the experimenters to acquire data. Data reduction and analysis are performed by the many facilities at NASA/GSFC in support of the experimenters.  相似文献   
240.
Star identification can be accomplished by several different available algorithms that identify the stars observed by a star tracker. However, efficiency and reliability remain key issues and the availability of new active pixel cameras requires new approaches. Two novel algorithms for recursive mode star identification are presented here. The first approach is derived by the spherical polygon search (SP-search) algorithm, it was used to access all the cataloged stars observed by the sensor field-of-view (FOV) and recursively add/remove candidate cataloged stars according to the predicted image motion induced by camera attitude dynamics. Star identification is then accomplished by a star pattern matching technique which identifies the observed stars in the reference catalog. The second method uses star neighborhood information and a catalog neighborhood pointer matrix to access the star catalog. In the recursive star identification process, and under the assumption of "slow" attitude dynamics, only the stars in the neighborhood of previously identified stars are considered for star identification in the succeeding frames. Numerical tests are performed to validate the absolute and relative efficiency of the proposed methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号