首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10680篇
  免费   18篇
  国内免费   31篇
航空   5142篇
航天技术   3521篇
综合类   42篇
航天   2024篇
  2021年   88篇
  2019年   64篇
  2018年   238篇
  2017年   166篇
  2016年   134篇
  2015年   67篇
  2014年   221篇
  2013年   297篇
  2012年   295篇
  2011年   464篇
  2010年   339篇
  2009年   479篇
  2008年   525篇
  2007年   354篇
  2006年   246篇
  2005年   294篇
  2004年   245篇
  2003年   312篇
  2002年   205篇
  2001年   339篇
  2000年   196篇
  1999年   243篇
  1998年   283篇
  1997年   194篇
  1996年   278篇
  1995年   331篇
  1994年   308篇
  1993年   195篇
  1992年   232篇
  1991年   102篇
  1990年   97篇
  1989年   224篇
  1988年   102篇
  1987年   109篇
  1986年   102篇
  1985年   303篇
  1984年   241篇
  1983年   197篇
  1982年   209篇
  1981年   330篇
  1980年   97篇
  1979年   75篇
  1978年   84篇
  1977年   74篇
  1975年   93篇
  1974年   70篇
  1973年   64篇
  1972年   75篇
  1971年   67篇
  1970年   68篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
961.
The Monitor-E spacecraft executed uncontrolled flight due to emergency situation, no telemetry information on parameters of the spacecraft’s attitude motion being available. So, the problem arose to determine the spacecraft’s rotational motion from the accessible indirect information—the electric current provided by solar batteries. In this paper the integrated statistical technique is described, that allows one to solve this problem. The values of current, obtained over the time interval some tens of minutes long, have been processed simultaneously by the least squares method using the integration of the equations of spacecraft’s rotational motion. As a result of processing, the initial conditions of motion were estimated, and the spacecraft’s moments of inertia were updated, as well as the angles, specifying solar batteries position in the spacecraft-fixed coordinate system. The results of processing of 12 data sets are presented, which allowed us to reconstruct the actual rotational motion of the spacecraft.  相似文献   
962.
963.
Purpose of the work is to analyze and to summarize the data of investigations into human hemodynamics performed over 20 years aboard orbital stations Salyut-7 and Mir with participation of 26 cosmonauts on space flights (SF) from 8 to 438 days in duration. The ultrasonic techniques and occlusive plethysmography demonstrated dynamics of changes in the cardiovascular system during SF of various durations. The parameters of general hemodynamics, the pumping function of the heart and arterial circulation in the brain remained stable in all the space flights; however, there were alterations in peripheral circulation associated with blood redistribution and hypovolemie in microgravity. The anti-gravity distribution of the vascular tone decayed gradually as unneeded. The most considerable changes were observed in leg vessels, equally in arteries (decrease in resistance) and veins (increase in maximum capacity). The lower body negative pressure test (LBNP) revealed deterioration of the gravity-dependent reactions that changed for the worse as SF duration extended. The cardiovascular deconditioning showed itself as loss of descent acceleration tolerance and orthostatic instability in the postflight period.  相似文献   
964.
This paper reports the global response of the mid high and low latitude ionosphere in four longitudinal sectors to two moderate geomagnetic storms that occurred during 2007 (the more intense storms occurred that year). The results obtained during these storms show that the ionospheric effects in general are not moderate in magnitude, showing an important degree of complexity as during intense storms. The outstanding features produced during the storms are significant positive storm effects at mid-high latitudes during the main phase/first part of the recovery, positive effects after the onset of the storm followed by negatives effects at middle latitudes and delayed positive effects during the night-time hours in the trough of the equatorial anomaly (“dusk” effect). Possible physical mechanisms for controlling the morphology of the ionosphere during these events are considered.  相似文献   
965.
Astronauts face numerous health challenges during long-duration space missions, including diminished immunity, bone loss and increased risk of radiation-induced carcinogenesis. Changes in the intestinal flora of astronauts may contribute to these problems. Soy-based fermented food products could provide a nutritional strategy to help alleviate these challenges by incorporating beneficial lactic acid bacteria, while reaping the benefits of soy isoflavones. We carried out strain selection for the development of soy ferments, selecting strains of lactic acid bacteria showing the most effective growth and fermentation ability in soy milk (Streptococcus thermophilus ST5, Bifidobacterium longum R0175 and Lactobacillus helveticus R0052). Immunomodulatory bioactivity of selected ferments was assessed using an in vitro challenge system with human intestinal epithelial and macrophage cell lines, and selected ferments show the ability to down-regulate production of the pro-inflammatory cytokine interleukin-8 following challenge with tumour necrosis factor-alpha. The impact of fermentation on vitamin B1 and B6 levels and on isoflavone biotransformation to agluconic forms was also assessed, with strain variation-dependent biotransformation ability detected. Overall this suggests that probiotic bacteria can be successfully utilized to develop soy-based fermented products targeted against health problems associated with long-term space travel.  相似文献   
966.
967.
968.
Previous attempts to identify aircraft stability and control derivatives from flight test data, using three-degrees-of-freedom (3-DOF) longitudinal or lateral-directional perturbation equation-of-motion models, suffer from the disadvantage that the coupling between the longitudinal and lateral-directional dynamics has been ignored. In this paper, the identification of aircraft stability parameters is accomplished using a more accurate 6-DOF model which includes this coupling. Hierarchical system identification theory is used to reduce the computational effort involved. The 6-DOF system of equations is first decomposed into two 3-DOF subsystems, one for the longitudinal dynamics and the other for the lateral-directional dynamics. The two subsystem parameter identification processes are then coordinated in such a way that the overall system parameter identification problem is solved. Next, a six-subsystem decomposition is considered. Computational considerations and comparison with the unhierarchically structured problem are presented.  相似文献   
969.
We consider the problem of a spacecraft subjected to constant body-fixed forces and moments about all three axes during a spinning-up, thrusting maneuver. In applications, undesired forces and moments can arise due to thruster imbalances and misalignments and to center-of-mass offset. In previous works, approximate analytical solutions have been found for the attitude motion, and for the change in inertial velocity and inertial position. In this paper we find asymptotic and limiting-case expressions which we derive from the analytic solutions, in order to obtain simplified, practical formulas that lend insight into the motion. Specifically, we investigate how the motion evolves (1) as time grows without bound and (2) for geometric cases of the sphere, the thin rod, and the thin plate. Closed-forms or upper-bound limits are provided for angular velocities, Eulerian angles, angular momentum pointing error, transverse and axial velocities, and transverse and axial displacements. Summaries for the asymptotic limits (for zero initial conditions) are provided in tabular form. Results are verified by numerical simulations.  相似文献   
970.
Analysis indicates that the rotation of a satellite can cause an error in the range-rate measurements of a two-way Doppler tracking system. The error is proportional to the rotation rate, and the constant of proportionality depends on the polarization of the satellite transponder antennas. Measurements made by ground-based simulation confirmed the analytical prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号