首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7828篇
  免费   68篇
  国内免费   55篇
航空   3938篇
航天技术   2784篇
综合类   92篇
航天   1137篇
  2021年   60篇
  2018年   91篇
  2017年   80篇
  2016年   58篇
  2014年   142篇
  2013年   203篇
  2012年   168篇
  2011年   276篇
  2010年   204篇
  2009年   282篇
  2008年   371篇
  2007年   213篇
  2006年   218篇
  2005年   220篇
  2004年   161篇
  2003年   243篇
  2002年   159篇
  2001年   249篇
  2000年   170篇
  1999年   207篇
  1998年   225篇
  1997年   177篇
  1996年   218篇
  1995年   257篇
  1994年   242篇
  1993年   151篇
  1992年   174篇
  1991年   98篇
  1990年   94篇
  1989年   191篇
  1988年   89篇
  1987年   84篇
  1986年   87篇
  1985年   250篇
  1984年   201篇
  1983年   174篇
  1982年   173篇
  1981年   242篇
  1980年   78篇
  1979年   58篇
  1978年   73篇
  1977年   69篇
  1976年   55篇
  1975年   84篇
  1974年   53篇
  1973年   54篇
  1972年   74篇
  1971年   57篇
  1970年   55篇
  1969年   52篇
排序方式: 共有7951条查询结果,搜索用时 15 毫秒
971.
972.
973.
974.
For an interception strategy of a removable target by a return space vehicle (RSV), we propose a structure of the control law by the aerodynamic efficiency that determines a chain of the three standard trajectories: nosing-up–free flight–nosing-down. A solution of the terminal problem is to determine numerical values of the control parameters that define moments to switch the RSV flight from one standard trajectory to another.  相似文献   
975.
A three-dimensional design model of a helicopter tubular skid landing gear based on the application of the large beam displacement theory is presented. The design model takes into account special features of constructive, physical and geometrical deformation nonlinearity. The analysis of a real helicopter structure is given that confirms sufficient validity of calculation results obtained using the model developed by comparing with the results of the finite element analysis.  相似文献   
976.
An integral method is proposed for calculating a jet propagating from the turbofan engine thrust reverser and interacting with a stream formed as a result of the after-landing aircraft run. The calculation results for the PS-90 engine are presented. The calculation data obtained show that the mathematical model developed adequately describes a qualitative pattern of main parameter variation in the sector jet propagating in a stream.  相似文献   
977.
The Magnetic Field of Mercury   总被引:1,自引:0,他引:1  
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.  相似文献   
978.
The past decade has seen a wealth of new data, mainly from the Galilean satellites and Mars, but also new information on Mercury, the Moon and asteroids (meteorites). In parallel, there have been advances in our understanding of dynamo theory, new ideas on the scaling laws for field amplitudes, and a deeper appreciation on the diversity and complexity of planetary interior properties and evolutions. Most planetary magnetic fields arise from dynamos, past or present, and planetary dynamos generally arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about one percent or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planetary liquid cores, the Coriolis force is dynamically important. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of an iron-rich core guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. This has led to an emphasis on the possible role of ongoing differentiation (growth of an inner core or “snow”). Although planetary dynamos mostly appear to operate with an internal field that is not very different from (2ρΩ/σ)1/2 in SI units where ρ is the fluid density, Ω is the planetary rotation rate and σ is the conductivity, theoretical arguments and stellar observations suggest that there may be better justification for a scaling law that emphasizes the buoyancy flux. Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and probably Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. Even small, differentiated planetesimals (asteroids) may have been capable of dynamo action early in the solar system history. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. As a consequence, the understanding of planetary magnetic fields depends as much on our understanding of the history and material properties of planets as it does on our understanding of the dynamo process. Future developments can be expected in our understanding of the criterion for a dynamo and on planetary properties, through a combination of theoretical work, numerical simulations, planetary missions (MESSENGER, Juno, etc.) and laboratory experiments.  相似文献   
979.
The Solar Dynamo     
Observations relevant to current models of the solar dynamo are presented, with emphasis on the history of solar magnetic activity and on the location and nature of the solar tachocline. The problems encountered when direct numerical simulation is used to analyse the solar cycle are discussed, and recent progress is reviewed. Mean field dynamo theory is still the basis of most theories of the solar dynamo, so a discussion of its fundamental principles and its underlying assumptions is given. The role of magnetic helicity is discussed. Some of the most popular models based on mean field theory are reviewed briefly. Dynamo models based on severe truncations of the full MHD equations are discussed.  相似文献   
980.
Direct measurements of the geomagnetic field have been made for more than 400 years, beginning with individual determinations of the angle between geographic and magnetic North. This was followed by the start of continuous time series of full vector measurements at geomagnetic observatories and the beginning of geomagnetic repeat stations surveys in the 19th century. In the second half of the 20th century, true global coverage with geomagnetic field measurements was accomplished by magnetometer payloads on low-Earth-orbiting satellites. This article describes the procedures and instruments for magnetic field measurements on ground and in space and covers geomagnetic observatories, repeat stations, automatic observatories, satellites and historic observations. Special emphasis is laid on the global network of geomagnetic observatories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号