首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5419篇
  免费   13篇
  国内免费   11篇
航空   2836篇
航天技术   1920篇
综合类   23篇
航天   664篇
  2021年   30篇
  2019年   32篇
  2018年   57篇
  2017年   31篇
  2014年   82篇
  2013年   132篇
  2012年   107篇
  2011年   155篇
  2010年   114篇
  2009年   177篇
  2008年   245篇
  2007年   136篇
  2006年   140篇
  2005年   143篇
  2004年   114篇
  2003年   170篇
  2002年   101篇
  2001年   176篇
  2000年   109篇
  1999年   140篇
  1998年   164篇
  1997年   123篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   76篇
  1990年   62篇
  1989年   138篇
  1988年   62篇
  1987年   66篇
  1986年   60篇
  1985年   195篇
  1984年   150篇
  1983年   131篇
  1982年   133篇
  1981年   176篇
  1980年   58篇
  1979年   41篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   58篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   37篇
排序方式: 共有5443条查询结果,搜索用时 15 毫秒
31.
Valve regulated lead acid (VRLA) batteries provide electrical performance that is virtually identical to sintered plate nickel-cadmium battery systems. In addition, the VRLA batteries offer the user a no-maintenance battery and other enhanced features that make this a very desirable battery for aircraft applications. In field trials, where VRLA batteries were substituted for nickel-cadmium batteries, the VRLA provided the user with a high reliability turbine engine starting battery under a wide variety of climatic conditions  相似文献   
32.
Since mean free paths for nuclear fragmentation are of the order of the ranges of primary Galactic Cosmic Ray (GCR) nuclei, determination of the radiation field produced by successive fragmentations of nuclei in material and tissue is essential to accurate assessment of GCR radiation risk to humans on long-duration missions outside the geomagnetosphere. We describe some recent measurements made at the Bevalac of heavy ion transport through materials, with representative results and examples of how they may be applied to aspects of the space radiation problem, including efforts to devise analytical tools for predicting biological effects and for designing spacecraft shielding.  相似文献   
33.
This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.  相似文献   
34.
One of the general trends of the MEMS sensors business is the utilization of the technology to satisfy harsh environment requirements (temperature, shock, vibration, environment security). The conjunction of material (standard Silicon, SiC or SOI), with complex micromachining techniques and advanced assembly techniques are the key to provide robust sensors with a miniimum concession on specification. The goal of this paper is to present progress on gun hard (> 20,000 g) and wide temperature range MEMS accelerometers (-120°C to +180°C). Concrete solutions and results (out of more than 500 tested products)) will be presented and discussed in detail.  相似文献   
35.
HYDRA is an experimental hot plasma investigation for the POLAR spacecraft of the GGS program. A consortium of institutions has designed a suite of particle analyzers that sample the velocity space of electron and ions between 2 keV/q – 35 keV/q in three dimensions, with a routine time resolution of 0.5 s. Routine coverage of velocity space will be accomplished with an angular homogeneity assumption of 16°, appropriate for subsonic plasmas, but with special 1.5° resolution for electrons with energies between 100 eV and 10 keV along and opposed to the local magnetic field. This instrument produces 4.9 kilobits s–1 to the telemetry, consumes on average 14 W and requires 18.7 kg for deployment including its internal shielding. The scientific objectives for the polar magnetosphere fall into four broad categories: (1) those to define the ambient kinetic regimes of ions and electrons; (2) those to elucidate the magnetohydrodynamic responses in these regimes; (3) those to assess the particle populations with high time resolution; and (4) those to determine the global topology of the magnetic field. In thefirst group are issues of identifying the origins of particles at high magnetic latitudes, their energization, the altitude dependence of the forces, including parallel electric fields they have traversed. In thesecond group are the physics of the fluid flows, regimes of current, and plasma depletion zones during quiescent and disturbed magnetic conditions. In thethird group is the exploration of the processes that accompany the rapid time variations known to occur in the auroral zone, cusp and entry layers as they affect the flow of mass, momentum and energy in the auroral region. In thefourth class of objectives are studies in conjunction with the SWE measurements of the Strahl in the solar wind that exploit the small gyroradius of thermal electrons to detect those magnetic field lines that penetrate the auroral region that are directly open to interplanetary space where, for example, the Polar Rain is observed.  相似文献   
36.
    
A review is presented of the interplanetary magnetic field observations acquired in early August 1972 when four solar flares erupted in McMath Plage region 11976. Measurements of the interplanetary field were obtained by Earth satellites, HEOS-2 and Explorer 41, and by Pioneers 9 and 10 which, by good fortune, were radially aligned and only 45° east of the Earth-Sun direction. In response to the four flares, four interplanetary shocks were seen at Earth and at Pioneer 9, which was then at a heliocentric distance of 0.78 AU. However, at Pioneer 10, which was 2.2 AU from the Sun, only two forward shocks and one reverse shock were seen. The available magnetic field data acquired in the vicinity of the shocks are presented. Efforts to identify corresponding shocks at the several locations and to deduce their velocities of propagation between 0.8 and 2.2 AU are reviewed. The early studies were based on average velocities between the Sun and Pioneer 9, the Sun and Earth and the Sun and Pioneer 10. A large deceleration of the shocks between the Sun and 0.8 AU as well as between 0.8 and 2.2 AU was inferred. More recently the local velocities of the shocks at Pioneers 9 and 10 have become available. A comparison of these velocities shows little, if any, deceleration between 0.8 and 2.2 AU and implies that most or all of the deceleration actually occurred nearer the Sun. Evidence is also presented that shows a significant departure of the flare-generated shock fronts from spherical symmetry.  相似文献   
37.
    
Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the “ISS” have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device “Pneumocard” was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex “Pneumocard” was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates.HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight.Our results demonstrate that autonomic function testing aboard the ISS using “Pneumocard” is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut.Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant and compelling.  相似文献   
38.
    
In order to help resolve some of the controversy associated with ground-based research that has supported the starch-statolith theory of gravity perception in plants, we performed spaceflight experiments with Arabidopsis in Biorack during the January 1997 and May 1997 missions of the Space Shuttle. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then were given either a 30, 60, or 90 minute gravity stimulus on a centrifuge. By the 90 min 1-g stimulus, the WT exhibited the greatest magnitude of curvature and the starchless mutant exhibited the smallest curvature while the two reduced starch mutants had an intermediate magnitude of curvature. In addition, space-grown plants had two structural features that distinguished them from the controls: a greater number of root hairs and an anomalous hypocotyl hook structure. However, the morphological changes observed in the flight seedlings are likely to be due to the effects of ethylene present in the spacecraft. (Additional ground-based studies demonstrated that this level of ethylene did not significantly affect gravitropism nor did it affect the relative gravitropic sensitivity among the four strains.) Nevertheless, this experiment on gravitropism was performed the \"right way\" in that brief gravitational stimuli were provided, and the seedlings were allowed to express the response without further gravity stimuli. Our spaceflight results support previous ground-based studies of these and other mutants since increasing amounts of starch correlated positively with increasing sensitivity to gravity.  相似文献   
39.
Hermes vehicle     
The presence of Europe in the future developments of spatial programs, which are foreseen, for the 1990s and further, needs the availability of vehicles, modules and all related technologies adapted to operational use of low earth orbit station.The manned HERMES vehicle shall be part of the in-orbit infrastructure realized either in the European context or in cooperation between Europe and the United States.The main mission for this vehicle will be to run a shuttle with the station that means transport and change of the crews, its safe return in abort condition and cargo transport of consumable and experimental equipment.Secondary missions could be servicing on automatic platform, making autonomous scientific experiments. Lastly, the vehicle, by means of its on-board propulsion capability, could be used to accomplish in-orbit tow and assembly missions.Studies which are undertaken now about the vehicle are devoted to the aerodynamic shape (research of a compromise between aerothermic and overall fitting), the system (functional architecture, ground and flight configuration); further works dealing with technology are presently on hand in the field of thermal protection, aerodynamics, power generation with a high massic yield.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号