首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   12篇
  国内免费   13篇
航空   208篇
航天技术   80篇
综合类   18篇
航天   262篇
  2024年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   1篇
  2014年   9篇
  2013年   9篇
  2012年   13篇
  2011年   15篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   24篇
  2006年   19篇
  2005年   30篇
  2004年   10篇
  2003年   14篇
  2002年   11篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   18篇
  1997年   12篇
  1996年   20篇
  1995年   27篇
  1994年   23篇
  1993年   11篇
  1992年   18篇
  1991年   8篇
  1990年   17篇
  1989年   13篇
  1988年   24篇
  1987年   20篇
  1986年   5篇
  1985年   26篇
  1984年   22篇
  1983年   26篇
  1982年   17篇
  1981年   11篇
  1980年   11篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1975年   4篇
排序方式: 共有568条查询结果,搜索用时 93 毫秒
461.
越来越多的航空公司开始关注飞机客舱升级改装市场,特别是在机载娱乐系统、座椅升级、“优选经济舱”等方面火热程度不断升级。  相似文献   
462.
The Lithopanspermia space experiment was launched in 2007 with the European Biopan facility for a 10-day spaceflight on board a Russian Foton retrievable satellite. Lithopanspermia included for the first time the vagrant lichen species Aspicilia fruticulosa from Guadalajara steppic highlands (Central Spain), as well as other lichen species. During spaceflight, the samples were exposed to selected space conditions, that is, the space vacuum, cosmic radiation, and different spectral ranges of solar radiation (λ?≥?110, ≥200, ≥290, or ≥400?nm, respectively). After retrieval, the algal and fungal metabolic integrity of the samples were evaluated in terms of chlorophyll a fluorescence, ultrastructure, and CO(2) exchange rates. Whereas the space vacuum and cosmic radiation did not impair the metabolic activity of the lichens, solar electromagnetic radiation, especially in the wavelength range between 100 and 200?nm, caused reduced chlorophyll a yield fluorescence; however, there was a complete recovery after 72?h of reactivation. All samples showed positive rates of net photosynthesis and dark respiration in the gas exchange experiment. Although the ultrastructure of all flight samples showed some probable stress-induced changes (such as the presence of electron-dense bodies in cytoplasmic vacuoles and between the chloroplast thylakoids in photobiont cells as well as in cytoplasmic vacuoles of the mycobiont cells), we concluded that A. fruticulosa was capable of repairing all space-induced damage. Due to size limitations within the Lithopanspermia hardware, the possibility for replication on the sun-exposed samples was limited, and these first results on the resistance of the lichen symbiosis A. fruticulosa to space conditions and, in particular, on the spectral effectiveness of solar extraterrestrial radiation must be considered preliminary. Further testing in space and under space-simulated conditions will be required. Results of this study indicate that the quest to discern the limits of lichen symbiosis resistance to extreme environmental conditions remains open.  相似文献   
463.
Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05?nM, which corresponds to a partial pressure for O(2) of about 4?×?10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.  相似文献   
464.
The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5?g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.  相似文献   
465.
466.
Thermoluminescent (TL) detectors were used for dosimetric investigations on the outer surface as well as inside Soviet spacecrafts of the "Cosmos" series. At the outer surface, ultrathin TL detectors, based on CaF2-PTFE and LiF, were arranged in special stacks and exposed to unshielded cosmic radiation. The strong decrease of dose within a few mg/cm2 demonstrates that weakly penetrating radiation is dominating in the radiation field under investigation. On the basis of glow curve analysis of LiF thermoluminescent detectors it could be shown, that the high doses are caused by electrons.  相似文献   
467.
Leading scientists and physicians review groundbreaking research that is leading the way to better health care for astronauts and new treatments for medical problems on Earth. This research includes the development and testing of a new Ventricular Assist Device for patients with heart failure awaiting heart transplantation; advancements in telemedicine that bring medical care to remote areas on Earth and aid in the diagnosis and treatment of illness during space flight; advanced technologies, such as a miniature mass spectrometer, cardiac ultrasound equipment, bone imaging, non-invasive High-Intensity Focused Ultrasound, non-invasive techniques for blood and tissue chemistry measurements; and advances in the treatment of spinal cord injuries.  相似文献   
468.
Powell J  Maise G  Paniagua J 《Acta Astronautica》2001,48(5-12):737-765
A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean. Details of the ALPH system, which is based on existing technology, are presented. ALPH units could be developed and demonstrated on Earth ice sheets within a few years. An Earth-Mars space transport architecture is described, in which Mars produced propellant and supplies for return journeys to Earth would be lifted with relatively low DeltaV to Mars orbit, and from there transported back to Earth orbit, enabling faster and lower cost trips from Earth to Mars. The exploration capability and quality of life in a mature Martian colony of 500 persons located on the North Polar Cap is outlined.  相似文献   
469.
470.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号