首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   0篇
航空   146篇
航天技术   9篇
航天   11篇
  2018年   66篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2013年   4篇
  2012年   1篇
  2011年   11篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  2001年   4篇
  1997年   1篇
  1993年   4篇
  1992年   2篇
排序方式: 共有166条查询结果,搜索用时 31 毫秒
61.
The Search Coil Magnetometer for THEMIS   总被引:2,自引:0,他引:2  
THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the measurements of the fluxgate magnetometers. The NEMI of the searchcoil antennas and associated pre-amplifiers is smaller than 0.76 pT $/\sqrt{\mathrm{Hz}}$ at 10 Hz. The analog signals produced by the searchcoils and associated preamplifiers are digitized and processed inside the Digital Field Box (DFB) and the Instrument Data Processing Unit (IDPU), together with data from the Electric Field Instrument (EFI). Searchcoil telemetry includes waveform transmission, FFT processed data, and data from a filter bank. The frequency range covered depends on the available telemetry. The searchcoils and their three axis structures have been precisely calibrated in a calibration facility, and the calibration of the transfer function is checked on board, usually once per orbit. The tri-axial searchcoils implemented on the five THEMIS spacecraft are working nominally.  相似文献   
62.
While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled “Slow solar wind sources and acceleration mechanisms in the corona” held in Bern (Switzerland) in March 2014 and 2015.  相似文献   
63.
64.
Book reviews     
The general significance of streamers of the solar corona is discussed in the frame of our knowledge of the solar wind phenomenon and the large-scale solar magnetic structure. Thermodynamical and geometric parameters of streamers observed and measured at total solar eclipses are reviewed. Both the low part (in the form of a helmet with a cusp) and the external part (in the form of a stalk extended at many solar radii) are considered. The modelling of streamers starts with the analysis of effects produced by the solar wind flow on a magnetic structure. Facts and arguments are presented in favor of a model with a current sheet and reconnection processes going on along the axis of the streamer, especially in the non-collisional part of the radially extended streamer. Further development of the Pneuman and Kopp (1971) model is discussed, including difficulties occurring in the interpretation of a stationary solution. An empirical model satisfying observations is presented. Future researchs on streamers were discussed with emphasis on observations to be done with the space-borne coronagraphs on the SOHO spacecraft.  相似文献   
65.
Blanc  M.  Bolton  S.  Bradley  J.  Burton  M.  Cravens  T.E.  Dandouras  I.  Dougherty  M.K.  Festou  M.C.  Feynman  J.  Johnson  R.E.  Gombosi  T.G.  Kurth  W.S.  Liewer  P.C.  Mauk  B.H.  Maurice  S.  Mitchell  D.  Neubauer  F.M.  Richardson  J.D.  Shemansky  D.E.  Sittler  E.C.  Tsurutani  B.T.  Zarka  Ph.  Esposito  L.W.  Grün  E.  Gurnett  D.A.  Kliore  A.J.  Krimigis  S.M.  Southwood  D.  Waite  J.H.  Young  D.T. 《Space Science Reviews》2002,104(1-4):253-346
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them. Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other. Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
66.
67.
InSight Mars Lander Robotics Instrument Deployment System   总被引:1,自引:0,他引:1  
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity.  相似文献   
68.
Hot flow anomalies (HFAs) were first discovered in the early 1980s at the bow shock of the Earth. In the 1990s these features were studied, observed and simulated very intensively and many new missions (Cluster, THEMIS, Cassini and Venus Express) focused the attention to this phenomenon again. Many basic features and the HFA formation mechanism were clarified observationally and using hybrid simulation techniques. We described previous observational, theoretical and simulation results in the research field of HFAs. We introduced HFA observations performed at the Earth, Mars, Venus and Saturn in this paper. We share different observation results of space mission to give an overview to the reader.  相似文献   
69.
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.  相似文献   
70.
There have been many significant advances in understanding magnetic field reconnection as a result of improved space measurements and two-dimensional computer simulations. While reviews of recent work have tended to focus on symmetric reconnection on ion and larger spatial scales, the present review will focus on asymmetric reconnection and on electron scale physics involving the reconnection site, parallel electric fields, and electron acceleration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号