首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3167篇
  免费   5篇
  国内免费   12篇
航空   1336篇
航天技术   883篇
综合类   9篇
航天   956篇
  2021年   27篇
  2019年   10篇
  2018年   181篇
  2017年   158篇
  2016年   86篇
  2015年   37篇
  2014年   79篇
  2013年   84篇
  2012年   95篇
  2011年   207篇
  2010年   172篇
  2009年   224篇
  2008年   228篇
  2007年   190篇
  2006年   59篇
  2005年   111篇
  2004年   87篇
  2003年   88篇
  2002年   58篇
  2001年   99篇
  2000年   39篇
  1999年   42篇
  1998年   52篇
  1997年   35篇
  1996年   52篇
  1995年   51篇
  1994年   36篇
  1993年   25篇
  1992年   41篇
  1991年   11篇
  1990年   15篇
  1989年   40篇
  1988年   16篇
  1987年   23篇
  1986年   22篇
  1985年   72篇
  1984年   43篇
  1983年   34篇
  1982年   43篇
  1981年   76篇
  1980年   18篇
  1979年   7篇
  1978年   8篇
  1977年   13篇
  1976年   9篇
  1975年   14篇
  1974年   15篇
  1973年   9篇
  1971年   7篇
  1970年   6篇
排序方式: 共有3184条查询结果,搜索用时 15 毫秒
121.
Cairns  Iver H.  Knock  S.A.  Robinson  P.A.  Kuncic  Z. 《Space Science Reviews》2003,107(1-2):27-34
Recent data and theory for type II solar radio bursts are reviewed, focusing on a recent analytic quantitative theory for interplanetary type II bursts. The theory addresses electron reflection and acceleration at the type II shock, formation of electron beams in the foreshock, and generation of Langmuir waves and the type II radiation there. The theory's predictions as functions of the shock and plasma parameters are summarized and discussed in terms of space weather events. The theory is consistent with available data, has explanations for radio-loud/quiet coronal mass ejections (CMEs) and why type IIs are bursty, and can account for empirical correlations between type IIs, CMEs, and interplanetary disturbances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
122.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
123.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
124.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
125.
We will discuss the observed, heavily damped transversal oscillations of coronal loops. These oscillations are often modeled as transversal kink oscillations in a cylinder. Several features are added to the classical cylindrical model. In our models we include loop curvature, longitudinal density stratification, and highly inhomogeneous radial density profiles. In this paper, we will first give an overview of recently obtained results, both analytically and numerically. After that, we shed a light on the computational aspects of the modeling process. In particular, we will focus on the parallellization of the numerical codes.  相似文献   
126.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
127.
Babkin  E. V.  Belyaev  M. Yu.  Efimov  N. I.  Sazonov  V. V.  Stazhkov  V. M. 《Cosmic Research》2004,42(2):155-164
A comparison of two methods of determination of the microacceleration quasisteady component arising onboard the International Space Station was performed. In the first method the acceleration was calculated using the relative motion of the station reconstructed on the basis of telemetry data. The second method was a direct measurement of the microacceleration by a low-frequency accelerometer and a smoothing of the data obtained. The used measurements were made by the American accelerometer MAMS. The above comparison can theoretically be used to refine the position of the station center of mass relative to its body.  相似文献   
128.
Eiges  P. E.  Zastenker  G. N.  Safrankova  J.  Nemecek  Z.  Eismont  N. A. 《Cosmic Research》2001,39(5):432-438
Based on simultaneous measurements of ion fluxes made onboard the closely separated satellites Interball-1and Magion-4, the propagation velocity of middle-scale plasma structures in the Earth's foreshock relative to the solar wind flow is estimated. The derived value of this velocity allows these structures to be identified as a fast magnetosonic wave propagating upstream of the solar wind inflowing the Earth's bow shock. An evaluation is also made of the correlation length of these disturbances in the plane perpendicular to the Sun–Earth line. This length is approximately equal to 2R E.  相似文献   
129.
Zetzer  J. I.  Kozlov  S. I.  Rybakov  V. A.  Ponomarenko  A. V.  Smirnova  N. V.  Romanovsky  Yu. A.  Meng  C.-I.  Erlandson  R.  Stoyanov  B. 《Cosmic Research》2002,40(3):233-240
The measurements of infrared emission from an artificial structure, which was generated during the Fluxus experiment with plasma jet injection into the atmosphere, are obtained and discussed for the first time. Additional experimental data on the airglow in the visible spectral band of the disturbed region of the atmosphere are presented. A generalized analysis of the data is given.  相似文献   
130.
The results of the satellite low-latitude and mid-latitude measurements of the disturbed plasma concentration, electron temperature, and quasi-stable electric field at heights of ~900 km after sunset are discussed. It is shown that the sharp fronts of changes in the electron temperature and plasma density observed in the experiment onboard the Intercosmos-Bulgaria-1300 satellite in the low-latitude (and equatorial) outer ionosphere can be related to damping of the oscillations of plasma electrons at local decreases of the plasma density (plasma “pits”) and formation of the vortex plasma structures at density and temperature gradients, which promotes conservation of ionosphere irregularities and makes the fronts of concentration variations steeper. Nonmonotonic variations in the plasma conductivity for the ionosphere currents in unstable plasma can be a cause of observed nonmonotonic disturbances of the vertical component of the “constant” electric field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号