首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6523篇
  免费   6篇
  国内免费   17篇
航空   3076篇
航天技术   2124篇
综合类   189篇
航天   1157篇
  2021年   48篇
  2018年   125篇
  2017年   85篇
  2016年   82篇
  2014年   128篇
  2013年   152篇
  2012年   159篇
  2011年   246篇
  2010年   170篇
  2009年   281篇
  2008年   301篇
  2007年   173篇
  2006年   129篇
  2005年   142篇
  2004年   169篇
  2003年   206篇
  2002年   223篇
  2001年   276篇
  2000年   125篇
  1999年   147篇
  1998年   187篇
  1997年   122篇
  1996年   170篇
  1995年   202篇
  1994年   173篇
  1993年   106篇
  1992年   149篇
  1991年   65篇
  1990年   72篇
  1989年   151篇
  1988年   66篇
  1987年   73篇
  1986年   65篇
  1985年   194篇
  1984年   147篇
  1983年   128篇
  1982年   147篇
  1981年   206篇
  1980年   71篇
  1979年   52篇
  1978年   64篇
  1977年   47篇
  1976年   49篇
  1975年   58篇
  1974年   52篇
  1973年   33篇
  1972年   51篇
  1971年   50篇
  1970年   33篇
  1969年   35篇
排序方式: 共有6546条查询结果,搜索用时 823 毫秒
391.
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ~0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.  相似文献   
392.
New Horizons: Anticipated Scientific Investigations at the Pluto System   总被引:1,自引:0,他引:1  
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).  相似文献   
393.
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources of coronal hole (CH) and interstream (IS).  相似文献   
394.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   
395.
The Grain Impact Analyser and Dust Accumulator (GIADA) onboard the ROSETTA mission to comet 67P/Churyumov–Gerasimenko is devoted to study the cometary dust environment. Thanks to the rendezvous configuration of the mission, GIADA will be plunged in the dust environment of the coma and will be able to explore dust flux evolution and grain dynamic properties with position and time. This will represent a unique opportunity to perform measurements on key parameters that no ground-based observation or fly-by mission is able to obtain and that no tail or coma model elaborated so far has been able to properly simulate. The coma and nucleus properties shall be, then, clarified with consequent improvement of models describing inner and outer coma evolution, but also of models about nucleus emission during different phases of its evolution. GIADA shall be capable to measure mass/size of single particles larger than about 15 μm together with momentum in the range 6.5 × 10−10 ÷ 4.0 × 10−4 kg m s−1 for velocities up to about 300 m s−1. For micron/submicron particles the cumulative mass shall be detected with sensitivity 10−10 g. These performances are suitable to provide a statistically relevant set of data about dust physical and dynamic properties in the dust environment expected for the target comet 67P/Churyumov–Gerasimenko. Pre-flight measurements and post-launch checkouts demonstrate that GIADA is behaving as expected according to the design specifications. The International GIADA Consortium (I, E, UK, F, D, USA).  相似文献   
396.
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome these disagreements.  相似文献   
397.
It is widely accepted that diffusive shock acceleration is an important process in the heliosphere, in particular in producing the energetic particles associated with interplanetary shocks driven by coronal mass ejections. In its simplest formulation shock acceleration is expected to accelerate ions with higher mass to charge ratios less efficiently than those with lower mass to charge. Thus it is anticipated that the Fe/O ratio in shock-accelerated ion populations will decrease with increasing energy above some energy. We examine the circumstances of five interplanetary shocks that have been reported to have associated populations in which Fe/O increases with increasing energy. In each event, the situation is complex, with particle contributions from other sources in addition to the shock. Furthermore, we show that the Fe/O ratio in shock-accelerated ions can decrease even when the shock is traveling through an Fe-rich ambient ion population. Thus, although shock acceleration of an Fe-rich suprathermal population has been proposed to explain large Fe-rich solar particle events, we find no support for this proposal in these observations.  相似文献   
398.
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.  相似文献   
399.
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.  相似文献   
400.
Mercury is a very difficult planet to observe from the Earth, and space missions that target Mercury are essential for a comprehensive understanding of the planet. At the same time, it is also difficult to orbit because it is deep inside the Sun’s gravitational well. Only one mission has visited Mercury; that was Mariner 10 in the 1970s. This paper provides a brief history of Mariner 10 and the numerous imaginative but unsuccessful mission proposals since the 1970s for another Mercury mission. In the late 1990s, two missions—MESSENGER and BepiColombo—received the go-ahead; MESSENGER is on its way to its first encounter with Mercury in January 2008. The history, scientific objectives, mission designs, and payloads of both these missions are described in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号