首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   1篇
航空   13篇
航天技术   14篇
航天   2篇
  2021年   1篇
  2018年   2篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   7篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1983年   2篇
  1979年   1篇
  1973年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
11.
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined.  相似文献   
12.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 1011 to 1014 eV during Long Duration Balloon (LDB) flights from McMurdo, Antarctica. Currently, analysis from the ATIC-1 test flight and ATIC-2 science flight is underway and preparation for a second science flight is in progress. Charge identification of the incident cosmic ray is accomplished, primarily, by a pixilated Silicon Matrix detector located at the very top of the instrument. While it has been shown that the Silicon Matrix detector provides good charge identification even in the presence of electromagnetic shower backscatter from the calorimeter, the detector only measures the charge once. In this paper, we examine use of the top scintillator hodoscope detector to provide a second measure of the cosmic ray charge and, thus, improve the ATIC charge identification.  相似文献   
13.
The Cosmic-Ray Energetics And Mass balloon-borne experiment has been launched twice in Antarctica, first in December 2004 and again in December 2005. It circumnavigated the South Pole three times during the first flight, which set a flight duration record of 42 days. A cumulative duration of 70 days within 13 months was achieved when the second flight completed 28 days during two circumnavigations of the Pole on 13 January 2006. Both the science instrument and support systems functioned extremely well, and a total 117 GB of data including 67 million science events were collected during these two flights. Preliminary analysis indicates that the data extend well above 100 TeV and follow reasonable power laws. The payload recovered from the first flight has been refurbished for the third flight in 2007, whereas the payload from the second flight is being refurbished to be ready for the fourth flight in 2008. Each flight will extend the reach of precise cosmic-ray composition measurements to energies not previously possible.  相似文献   
14.
A practical filter is suggested for ground-based missile tracking in a capture-guidance mode utilizing angle-only measurements from a passive missile sensor, and its performance is evaluated by a realistic system-simulation study. A missile-acceleration model that provides inputs to the filter is also suggested. The filter has a decoupled structure of independent azimuth and elevation channels, which requires fewer computations in solving the filter gain compared to a coupled structure. Simulation results show good tracking performance of the filter when used in association with the proposed missile-acceleration model  相似文献   
15.
Fast alignment using rotation vector and adaptive Kalman filter   总被引:5,自引:0,他引:5  
A fast and convenient alignment method is proposed. To improve the speed of convergence, we used rotation vectors instead of traditional Euler angles. Furthermore, we developed an algorithm to automatically tune the measurement noise covariance matrix using adaptive Kalman filtering. Finally, the developed algorithms were applied to an aerial imaging system to automatically geo-locate the centers of the images.  相似文献   
16.
InSight Mars Lander Robotics Instrument Deployment System   总被引:1,自引:0,他引:1  
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity.  相似文献   
17.
This paper describes the development and validation of a transportable active transponder designed for the image calibration of Korea Multi-Purpose Satellite-5 (KOMPSAT-5) with a synthetic aperture radar (SAR). Ground targets are essential in SAR image calibration. The environment for the deployment of ground targets for SAR image calibration should provide uniformity and minimum interference. The Amazon or deserts are regarded as desirable environments. However, such environments for SAR image calibration are difficult to find in Korea. Thus, it will be advantageous to have an active transponder whose performance will not be severely limited by the absence of such uniform environment. We have therefore developed an active transponder which has an adjustable internal delay and into which the orbit data of an arbitrary satellite can be loaded. The stored obit data with the aid of an internal global positioning system (GPS) receiver and gyroscope enables the active transponder to point to a selected satellite. In addition, a virtual deployment of the active transponder is possible due to its adjustable internal delay. Thus, the developed active transponder can be deployed at any place without environmental constraint. The performance of the developed active transponder is validated using the satellite TerraSAR-X, which is already in operation. The test results show that the active transponder is successfully compliant with the requirements for KOMPSAT-5 image calibration.  相似文献   
18.
Launched from McMurdo (Antarctica) in December 2005, the balloon experiment CREAM (cosmic ray energetics and mass) collected about 15 million triggers during its second flight of 28 days. Redundant charge identification, by two pixelated silicon arrays and a time resolved pulse shaping technique from a scintillator system, allowed a clear signature of the primary nuclei. The energy was measured with a tungsten/SciFi calorimeter preceded by a graphite target. Preliminary results from the analysis of the data of the second flight are presented.  相似文献   
19.
Following the Hubble Space Telescope (HST), the next generation James Webb Space Telescope (JWST) is being developed to be launched in a few years. JWST will be a segmented mirror telescope with a design much like that developed for ground-based telescopes over the past 20 years. Several segmented mirror telescopes are currently in operation, and next generation ground-based telescopes of the 30-m class are also being designed using segmented primary mirrors. Regardless of size, segmented primary mirror telescopes often require the use of aspheric segment mirrors. One of the key factors in fabrication of aspheric segment mirrors is feasibility of testing off-axis surfaces with high accuracy. A couple of test methods have been investigated for aspheric off-axis segments. As a case study, we apply these test methods to secondary segmented mirror models of the Giant Magellan Telescope. We derive required dimensions of test set-ups and assess sensitivity of optical alignment. Characteristics of the test methods are also discussed.  相似文献   
20.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed for high energy cosmic ray ion detection. The possibility to identify high energy primary cosmic ray electrons in the presence of the ‘background’ of cosmic ray protons has been studied by simulating nuclear-electromagnetic cascade showers using the FLUKA Monte Carlo simulation code. The ATIC design, consisting of a graphite target and an energy detection device, a totally active calorimeter built up of 2.5 cm × 2.5 cm × 25.0 cm BGO scintillator bars, gives sufficient information to distinguish electrons from protons. While identifying about 80% of electrons as such, only about 2 in 10,000 protons (@ 150 GeV) will mimic electrons. In September of 1999 ATIC was exposed to high-energy electron and proton beams at the CERN H2 beam line, and this data confirmed the electron detection capabilities of ATIC. From 2000-12-28 to 2001-01-13 ATIC was flown as a long duration balloon test flight from McMurdo, Antarctica, recording over 360 h of data and allowing electron separation to be confirmed in the flight data. In addition, ATIC electron detection capabilities can be checked by atmospheric gamma-ray observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号