首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   1篇
  国内免费   10篇
航空   220篇
航天技术   109篇
综合类   2篇
航天   53篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   19篇
  2013年   13篇
  2012年   13篇
  2011年   36篇
  2010年   11篇
  2009年   23篇
  2008年   25篇
  2007年   15篇
  2006年   13篇
  2005年   9篇
  2004年   14篇
  2003年   10篇
  2002年   3篇
  2001年   12篇
  2000年   8篇
  1999年   12篇
  1998年   8篇
  1997年   5篇
  1996年   10篇
  1995年   6篇
  1994年   4篇
  1993年   8篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
311.
The construction of a solar sail from commercially available metallized film presents several challenges. The solar sail membrane is made by seaming together precut lengths of ultrathin metallized polymer film into the required geometry. This assembled sail membrane is then folded into a small stowage volume prior to launch. The sail membranes must have additional features for connecting to rigid structural elements (e.g., sail booms) and must be electrically grounded to the spacecraft bus to prevent charge build up. Space durability of the material and mechanical interfaces of the sail membrane assemblies will be critical for the success of any solar sail mission. In this study, interfaces of polymer/metal joints in a representative solar sail membrane assembly were tested to ensure that the adhesive interfaces and the fastening grommets could withstand the temperature range and expected loads required for mission success. Various adhesion methods, such as surface treatment, commercial adhesives, and fastening systems, were experimentally tested in order to determine the most suitable method of construction.  相似文献   
312.
313.
This study presents a semi-analytic approach for optimal tracking and formation keeping with high precision. For a continuous-thrust propulsion system, optimal formation keeping problems near a general Keplerian orbit are formulated with respect to a reference trajectory which is an explicit function of time. A nonlinear optimal tracking control law is then derived in generic form as a function of the states by employing generating functions in the theory of Hamiltonian systems. The applicability of the overall process is not affected by the complexity of dynamics and the selection of coordinates. As it allows us to design a nonlinear optimal feedback controller in the Earth-centered inertial frame, a variety of nonlinear perturbations can be incorporated easily without complicated coordinate transformations. Numerical experiments demonstrate that the nonlinear tracking control logic achieves superior tracking accuracy and cost reduction by accommodating higher-order nonlinearities.  相似文献   
314.
Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05?nM, which corresponds to a partial pressure for O(2) of about 4?×?10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.  相似文献   
315.
美国航空公司成为全球首家在民用飞机的舱门、安定面、方向舵、升降舵等可更换结构部件上安装具有自动识别(AIT)功能的接触式记忆按钮的航空公司。这种接触式记忆按钮的几何外形只有美元的一角硬币那么大,具有大容量和自动化数据采集等特点,可以帮助航空公司高效地监控飞机可更换结构部件的运营历史,为航空公司节约运营成本、提高数据的精确度。据美国航空公司介绍,在这类结构  相似文献   
316.
A method for monitoring atomic clocks on board Global Navigation Satellites System (GNSS) satellites is described to address the issue of clock related signal integrity in safety–critical applications of GNSS. The carrier-phase time transfer is employed in the clock monitoring method which enables tight tracking of the satellite onboard clocks and thus improves detectability of clock anomalies. Detecting onboard clock anomalies requires the ability to monitor clocks in real time, and a Kalman filter can then be utilized to estimate the phase offsets between the satellite clocks and ground clocks. This study, using the difference between the measured and predicted phase offset as a test statistic, sets a threshold for clock anomalies based on the prediction interval approach. Finally the validity of the monitoring method is examined by processing a set of real GNSS data that includes two recent incidents of clock anomalies in GNSS satellites.  相似文献   
317.
Performing the sensitivity analyses of the contact conduction and the position of thermostat on the basis of the thermal model established, the study of thermal design is accomplished for the preparation of possible mechanical interface change of the satellite propulsion system depending on the satellite system design. A relatively simple thermal model is taken into consideration for the convenience of the analysis. A variety of the spacecraft bus voltages and the contact resistances are examined as well as the position of thermostat on propulsion components. As a consequence, even though the mechanical interface condition is changed on the same module, the successful thermal design could be achieved if we design the heater to have sufficiently large power with reference to the heritage value of contact resistance. Besides the reasonable performance on the thermal control is assured with the thermostat location errors, if the uncertainty in the position of thermostat is not quite large when assembling tank module.  相似文献   
318.
In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.  相似文献   
319.
Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4±9.0 years, 69.5±15.4 kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. All training was conducted with the subject in orthostasis. When configured for spaceflight, subjects will be fixed to the device via a vest with loop attachments secured to subject load devices. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO2peak and 1RM. Results: VO2peak and 1RM improved after 6 weeks, with additional improvements after 12 weeks (1.95±0.5, 2.28±0.5, 2.47±0.6 L min?1, and 131.2±63.9,182.8±75.0, 207.0±75.0 kg) for baseline, 6 weeks, and 12 weeks, respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3±39.5, 76.8±39.2, and 55.7±21.7 N m vs. 86.1±37.3, 85.1±34.3, and 62.1±26.4 N m, respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip.  相似文献   
320.
Conventional spacecraft structural function has been limited to supporting loads and mounting avionics only. In contrast, the technology of ‘multi-functional structures’ can integrate thermal and electronic functions into the spacecraft’s inherent load-bearing capability. In addition, sufficient radiation shielding effectiveness can be provided for the anticipated mission environment. Utilizing this concept, the ratio of electrical functionality to spacecraft volume can be dramatically increased and significant mass savings can be obtained. In this paper, spacecraft electronics are miniaturized using advanced IT applications such as flexible circuitry, miniaturized components, featherweight connectors, and so on, that they can be easily embedded within a structural panel. A sandwich structural panel consists of an aluminum honeycomb core and lightweight CFRP facesheets. Integration of electronics is implemented within the panel by mounting electronics on a multi-layered composite enclosure with multi-materials. This composite enclosure provides a load-bearing, effective thermal conduction, radiation shielding capabilities and an available space for embedding electronics. A series of environmental tests and analyses is carried out to demonstrate that the flight hardware is qualified for the expected mission environments. This approach will be utilized for the advanced small satellite ‘STSAT-3’ to validate the multi-functional structures concept.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号