首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8130篇
  免费   15篇
  国内免费   24篇
航空   3862篇
航天技术   2727篇
综合类   41篇
航天   1539篇
  2021年   66篇
  2019年   49篇
  2018年   182篇
  2017年   133篇
  2016年   134篇
  2015年   61篇
  2014年   183篇
  2013年   253篇
  2012年   215篇
  2011年   285篇
  2010年   231篇
  2009年   351篇
  2008年   378篇
  2007年   240篇
  2006年   200篇
  2005年   229篇
  2004年   192篇
  2003年   257篇
  2002年   173篇
  2001年   277篇
  2000年   142篇
  1999年   169篇
  1998年   213篇
  1997年   155篇
  1996年   197篇
  1995年   275篇
  1994年   229篇
  1993年   135篇
  1992年   159篇
  1991年   86篇
  1990年   76篇
  1989年   165篇
  1988年   72篇
  1987年   73篇
  1986年   72篇
  1985年   247篇
  1984年   203篇
  1983年   173篇
  1982年   177篇
  1981年   248篇
  1980年   78篇
  1979年   53篇
  1978年   63篇
  1977年   61篇
  1976年   48篇
  1975年   68篇
  1973年   47篇
  1972年   63篇
  1971年   49篇
  1970年   50篇
排序方式: 共有8169条查询结果,搜索用时 0 毫秒
81.
Cosmic Research - The results of an analysis of the space–time characteristics and dynamics of precipitations of magnetospheric electrons with energies in the range from 0.1 to 0.7 MeV are...  相似文献   
82.
Space Science Reviews - Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in...  相似文献   
83.
A total of 3600 spectra of Comet Halley in the 275–710 nm were obtained on March, 8, 9, 10 and 11, 1986, from the VEGA 2 spacecraft. The emissions of OH, NH, CN, C3, CH, C2, NH2 and H2O+ are identified. From the OH intensity in the (0,0) band: 1.1 Megarayleigh at 5400 km from the nucleus, it can be inferred that the OH production rate was (1.4 ± 0.5)×1030 molecules s−1. The NH, C3, CH and NH2 bands became comparatively more intense at distances from the nucleus shorter than 3000km. At 06:40 U.T. when the instrument field of view was 6000×4500 km, two jets were observed. Spectra from the jets show significant differences with other spectra. Inside a jet NH, C3 and NH2 are comparatively more intense and the rotational distributions of OH, CN and C2 are strongly distorted. This shows that part of the observed emissions probably comes from radicals directly produced in the excited state during the initial process of photolysis of the parent molecules.  相似文献   
84.
There is important progress now in the identifications and measurements of primary (parent) molecules in the inner coma of Comet Halley. H2O, CO2 and CO are definitely in the list, CH and some complicate organic molecules are suspected. Gas production rate for water vapor is QH2O 1030 s−1. The bulk of data doesn't contradict to the Whipple model of nucleus (with clathrate modification). Pronounced spatial structure of gaseous flow in the coma was observed, but in general measured properties of neutral gas in the coma of Comet Halley are not very different from predicted. Situation for dust is different. In situ dust measurements show that size spectrum and optical properties of particles in coma are substantively declining from predicted on the base of groundbased photometry. However there are discrepancies between Vega and Giotto dust counter data. Dust in the inner coma didn't prevent the succesful imaging of nucleus by TV on Vega 1 and 2.  相似文献   
85.
Formation and motion (at the initial stage) of six limb CMEs detected in the period June 2010 to June 2011 are investigated using the high-resolution data of the PROBA2 and SDO spacecraft combined with the data of SOHO/LASCO coronagraphs. It is demonstrated that several loop-like structures of enhanced brightness originate in the region of CME formation, and they move one after another with, as a rule, different velocities. These loop-like structures in the final analysis form the frontal structure of CME. Time dependences of the velocity and acceleration of the ejection’s front are obtained for all CMEs under consideration. A conclusion is drawn about possible existence of two classes of CMEs depending on their velocity time profiles. Ejections, whose velocity after reaching its maximum sharply drops by a value of more than 100 km/s and then goes over into a regime of slow change, belong to the first class. Another class of CMEs is formed by ejections whose velocity changes slowly immediately after reaching the maximum. It is demonstrated that the CME’s angular dimension increases at the initial stage of ejection motion up to a factor of 3 with a time scale of doubling the angular size value within the limits 3.5–11 min since the moment of the first measurement of this parameter of an ejection. For three CMEs it is shown that at the initial stage of their motion for a certain time interval they are stronger expanded than grow in the longitude direction.  相似文献   
86.
The results of updating the parameters of motion of the Spektr-R spacecraft at the end of 2016 have shown that, in January 2018, with a probability close to unity, the condition that a spacecraft stay in the Earth’s shadow is violated; however, in May of the same year, the ballistic life of the spacecraft will be terminated. Thus, in 2017, the question arose of how to design the correction of flight of this spacecraft using its onboard propulsion system. The correction was designed with allowance for the fact that, for the first time since it was launched, the spacecraft in the course of several years, beginning with 2017, repeatedly approaches the Moon, deeply immersing into its sphere of influence. This paper presents the technologically and organizationally convenient, allowable versions of upcoming correction of the Spektr-R spacecraft trajectory and justifies the particular scheme of its implementation.  相似文献   
87.
This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented.  相似文献   
88.
Quasi-static microaccelerations are estimated for a satellite specially designed to perform space experiments in the field of microgravity. Three modes of attitude motion of the spacecraft are considered: passive gravitational orientation, orbital orientation, and semi-passive gravitational orientation. In these modes the lengthwise axis of the satellite is directed along the local vertical, while solar arrays lie in the orbit plane. The second and third modes are maintained using electromechanical executive devices: flywheel engines or gyrodynes. Estimations of residual microaccelerations are performed with the help of mathematical modeling of satellite’s attitude motion under the action of gravitational and aerodynamic moments, as well as the moment produced by the gyro system. It is demonstrated that all modes ensure rather low level of quasi-static microaccelerations on the satellite and provide for a fairly narrow region of variation for the vector of residual microacceleration. The semi-passive gravitational orientation ensures also a limited proper angular momentum of the gyro system.  相似文献   
89.
The five main types of antisunward propagating energetic fluxes (particles and emission) may be thought of as well established to date, the effects of which lead to a particilar character of disturbance in the near-terrestrial environment (the Earth's magnetosphere, ionosphere and atmosphere). The strongest global restructuring of the magnetosphere and ionosphere is caused by fluxes of relatively dense n of 1-70 cm-3 at the Earth's orbit) Solar Wind (SW) quasi-neutral, low-energy (E < 10 keV) plasma which cause magnetospheric and ionospheric storms lasting 24 hours or longer. For that reason, main attention is given to their study at the initial stage of research. The physical essence of the method of predicting disturbances in the near-terrestrial space environment, the amplitude of which can be expressed in, for example, the Kp index units, involves:(1) identifying all the most geo-effective SW streams of type, (2) determing their sources on the solar disk,and (3) quantifying the correlations between the characteristics of their solar sources with a maximum value of the Kp-index that is caused by the concerned type of SW stream. Semi-phenomenological relations have been obtained, which relate parameters of type SW stream sources to characteristics of geomagnetic storms:storm commencement, the time at which the storm intensity reaches its maximum values, the storm duration,as well as to the storm amplitude expressed in terms of geomagnetic indeces.  相似文献   
90.
We describe work that has recently been completed on deriving the fundamental parameters of eight WR stars through the photoionization modelling of their surrounding nebulae using non-LTE WR flux distributions. The resulting effective temperatures range from 57 000–71 000 K for the WN4-5 stars and <30 000–42 000 K for the WN6-8 stars. The derived stellar parameters are compared with those obtained from stellar emission line modelling. We find good agreement for the hot early WN stars, indicating that the non-LTE WR flux distributions have essentially the correct shape in the crucial far-UV region. We find lower temperatures for the four cooler late WN stars, particularly for the two WN6 stars. For the nebulae surrounding these stars, we find that the model flux distributions produce too much nebular ionization. We suggest that these discrepancies arise because of the lack of line-blanketing in the WR atmospheres. For the WO1 central star of G2.4+1.4, with strong nebular He II 4686 A emission, we derive a temperature of 105 000 K, somewhat less than previous estimates. The positions of our eight WR stars on the H-R diagram are compared with the evolutionary tracks of Maeder (1990) for solar metallicity. In common with previous workers, we find that our derived luminosities are too low, giving an initial mass range of 25–40 M, below that expected for the majority of WR stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号