首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   0篇
航空   164篇
航天技术   51篇
航天   27篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   16篇
  2017年   7篇
  2016年   3篇
  2015年   8篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   13篇
  2008年   10篇
  2007年   16篇
  2006年   13篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   9篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1985年   4篇
  1984年   14篇
  1983年   7篇
  1982年   9篇
  1981年   9篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
81.
Space Science Reviews - In this chapter, we review the contribution of space missions to the determination of the elemental and isotopic composition of Earth, Moon and the terrestrial planets, with...  相似文献   
82.
83.
The absolute ages of cratered surfaces in the inner solar system, including Mars, are derived by extrapolation from the impact flux curve for the Moon which has been calibrated on the basis of absolute ages of lunar samples. We reevaluate the lunar flux curve using isotope ages of lunar samples and the latest views on the lunar stratigraphy and the principles of relative and absolute age dating of geologic surface units of the Moon. The geological setting of the Apollo and Luna landing areas are described as far as they are relevant for this reevaluation. We derive the following best estimates for the ages of the multi-ring basins and their related ejecta blankets and present alternative ages for the basin events (in parentheses): 3.92 ± 0.03 Gyr (or 3.85 ± 0.05 Gyr) for Nectaris, 3.89 ± 0.02 Gyr (or 3.84 ± 0.04 Gyr) for Crisium, 3.89 ± 0.01 Gyr (or 3.87 ± 0.03 Gyr) for Serenitatis, and 3.85 ± 0.02 Gyr (or 3.77 ± 0.02 Gyr) for Imbrium. Our best estimates for the ages of the mare landing areas are: 3.80 ± 0.02 Gyr for Apollo 11 (old surface), 3.75 ± 0.01 Gyr for Apollo 17, 3.58 ± 0.01 Gyr for Apollo 11 (young surface), 3.41 ± 0.04 Gyr for Luna 16, 3.30 ± 0.02 Gyr for Apollo 15, 3.22 ± 0.02 Gyr for Luna 24, and 3.15 ± 0.04 Gyr for Apollo 12. The ages of Eratosthenian and Copernican craters remain: ~ 2.1 (?) Gyr (Autolycus), 800 ± 15 Myr (Copernicus), 109 ± 4 Myr (Tycho), 50.3 ± 0.8 (North Ray crater, Apollo 16), and 25.1 ± 1.2 (Cone crater, Apollo 14). When plotted against the crater densities of the relevant lunar surface units, these data result in a revised lunar impact flux curve which differs from the previously used flux curve in the following respects: (1) The ages of the stratigraphically most critical impact basins are notably younger, (2) the uncertainty of the calibration curve is decreased, especially in the age range from about 4.0 to 3.0 Gyr, (3) any curve for ages older than 3.95 Gyr (upper age limit of the Nectaris ejecta blanket) is abandoned because crater frequencies measured on such surface formations cannot be correlated with absolute ages obtained on lunar samples. Therefore, the impact flux curve for this pre-Nectarian time remains unknown. The new calibration curve for lunar crater retention ages less than about 3.9 Gyr provides an updated standard reference for the inner solar system bodies including Mars.  相似文献   
84.
Interstellar dust was first identified by the dust sensor onboard Ulysses after the Jupiter flyby in February 1992. These findings were confirmed by the Galileo experiment on its outbound orbit from Earth to Jupiter. Although modeling results show that interstellar dust is also present at the Earth orbit, a direct identification of interstellar grains from geometrical arguments is only possible outside of 2.5 AU. The flux of interstellar dust with masses greater than 6 · 10–14 g is about 1 · 10–4 m –2 s –1 at ecliptic latitudes and at heliocentric distances greater than 1AU. The mean mass of the interstellar particles is 3 · 10–13 g. The flux arrives from a direction which is compatible with the influx direction of the interstellar neutral Helium of 252° longitude and 5.2° latitude but it may deviate from this direction by 15 – 20°.  相似文献   
85.
During the last few years quite some progress has been achieved in the field of low and medium energy gamma-ray astronomy below about 30 MeV. Gamma rays from the galactic center and anti-center region have been detected, which require a high interstellar electron flux in the 100 MeV range, if they are predominantly diffuse in nature. Though the Crab pulsar and its nebula are still the only galactic gamma-ray sources which definitely have been detected, some recently determined upper limits to the gamma-ray fluxes of other radio pulsars are close to the theoretically expected values. Active galaxies seem to have a maximum of luminosity in the range between several 100 keV and a few MeV and, therefore, are of special interest. First observational results have been reported on the Seyfert galaxies NGC 4151 and MCG 8-11-11, and the radio galaxy CenA. The nature of the diffuse cosmic gamma-ray component at low gamma-ray energies is not yet solved. Unresolved active galaxies are good candidates for its origin.Considering the present status of gamma ray astronomy the study of galactic sources like radio pulsars and the unidentified high energy gamma-ray sources, the Milky Way as a whole, active galaxies and the diffuse cosmic sky seem to be the prime targets for broad band observations below 30 MeV in the GRO area. An unexplored field like that of low energy gamma-ray astronomy, however, is always open for surprises.  相似文献   
86.
87.
This study presents an experimentthat investigates how individuals perform anavigation test in a desktop virtualenvironment. The participants were randomlyassigned to one of the five test conditions:(C1) a map as information material during theentire test, (C2) the map only visible beforethe test, (C3) textual information during theentire test, (C4) textual information onlybefore the test and (C5) no additionalnavigational cues. The results were thatadditional information during the entire testwas more effective than short periods ofstudying the map or textual information onlybefore the test. However, participants weremore accurate in finding their route when anykind of navigational cues were used than whenno navigational cues were used. The results ofan additional questionnaire indicate thatbetween the test groups there were nodifferences in estimating the travelleddistances. The performance to draw the coveredpath into a sketch map of the landscape did notdiffer significantly between the test groupswith additional navigational cues. Theseresults indicate that in certain environmentstextual information may provide an effectivealternative to navigation training with a map.  相似文献   
88.
The German Infrared Laboratory GIRL is a liquid helium-cooled telescope with four focal plane instruments dedicated to astronomical and aeronomical observations.Hardware tests were performed with a thermal model of the cryostat and other components as active phase separator, optical switches, main mirror, baffle etc.In the test phase the thermal behavior of the system was checked out in a step by step procedure. The timeline of the individual experiments and of two representative orbits were simulated by electrical heaters. Temperatures and helium flow rates for the different operation modes were measured.An outlook shows that the project phase in 1982 is dedicated to further development and tests of hardware and complete definition and specification of all GIRL systems.  相似文献   
89.
Blanc  M.  Bolton  S.  Bradley  J.  Burton  M.  Cravens  T.E.  Dandouras  I.  Dougherty  M.K.  Festou  M.C.  Feynman  J.  Johnson  R.E.  Gombosi  T.G.  Kurth  W.S.  Liewer  P.C.  Mauk  B.H.  Maurice  S.  Mitchell  D.  Neubauer  F.M.  Richardson  J.D.  Shemansky  D.E.  Sittler  E.C.  Tsurutani  B.T.  Zarka  Ph.  Esposito  L.W.  Grün  E.  Gurnett  D.A.  Kliore  A.J.  Krimigis  S.M.  Southwood  D.  Waite  J.H.  Young  D.T. 《Space Science Reviews》2002,104(1-4):253-346
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them. Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other. Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号