首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   0篇
航空   164篇
航天技术   51篇
航天   27篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   16篇
  2017年   7篇
  2016年   3篇
  2015年   8篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   13篇
  2008年   10篇
  2007年   16篇
  2006年   13篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   9篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1985年   4篇
  1984年   14篇
  1983年   7篇
  1982年   9篇
  1981年   9篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
排序方式: 共有242条查询结果,搜索用时 93 毫秒
171.
We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.  相似文献   
172.
Classical planetary ephemeris construction comprises three major steps which are to be performed iteratively: numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of observations (reduction step), and optimization of model parameters (adjustment step). In future, this approach may become challenged by further refinements in force modeling (e.g. inclusion of much more significant minor bodies than in the past), an ever-growing number of planetary observations (e.g. the vast amount of spacecraft tracking data), and big data issues in general. In order to circumvent the need for both the inversion of normal equation matrices and the determination of partial derivatives, and to prepare the ephemeris for applications apart from stand-alone solar-system planetary orbit calculations, here we propose an alternative ephemeris construction method. The main idea is to solve it as an optimization problem by straightforward direct evaluation of the whole set of mathematical formulas, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and potential numerical difficulties. The usual gradient search is replaced by a stochastic search, namely an evolution strategy, the latter of which is perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach allows for multi-criteria optimization and time-varying optima. These issues will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of a generalized physical state (orbit, size, shape, rotation, gravity, ) of celestial bodies (planets, satellites, asteroids, or comets), and/or if one seeks near real-time solutions. Here, we outline the general idea and exemplarily optimize high-correlated asteroidal ring model parameters (total mass and heliocentric radius), and individual asteroid masses, based on simulated observations.  相似文献   
173.
Exact knowledge of the angle of Earth rotation UT1 with respect to coordinated time UTC, dUT1, is essential for all space geodetic techniques. The only technique which is capable of determining dUT1 is Very Long Baseline Interferometry (VLBI). So-called Intensive VLBI sessions are performed on a daily basis in order to provide dUT1. Due to the reduced geometry of Intensive sessions, there is however no possibility to estimate tropospheric gradients from the observations, which limits the accuracy of the resulting dUT1 significantly. This paper deals with introducing the information on azimuthal asymmetry from external sources, thus attempting to improve the dUT1 estimates. We use the discrete horizontal gradients GRAD and the empirical horizontal gradients GPT3 as well as ray-traced delays from the VieVS ray-tracer for this purpose, which can all be downloaded from the VMF server of TU Wien (http://vmf.geo.tuwien.ac.at). The results show that this strategy indeed improves the dUT1 estimates when compared to reference values from multi-station VLBI stations, namely by up to 15%. When converted to length-of-day (LOD), the estimates can be compared to LODs from global analyses of Global Navigation Satellite Systems (GNSS). Here, the improvement amounts to up to 7% compared to neglecting a priori information on azimuthal asymmetry.  相似文献   
174.
175.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.  相似文献   
176.
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.  相似文献   
177.
The atmosphere of the Sun is characterized by a complex interplay of competing physical processes: convection, radiation, conduction, and magnetic fields. The most obvious imprint of the solar convection and its overshooting in the low atmosphere is the granulation pattern. Beside this dominating scale there is a more or less smooth distribution of spatial scales, both towards smaller and larger scales, making the Sun essentially a multi-scale object. Convection and overshooting give the photosphere its face but also act as drivers for the layers above, namely the chromosphere and corona. The magnetic field configuration effectively couples the atmospheric layers on a multitude of spatial scales, for instance in the form of loops that are anchored in the convection zone and continue through the atmosphere up into the chromosphere and corona. The magnetic field is also an important structuring agent for the small, granulation-size scales, although (hydrodynamic) shock waves also play an important role—especially in the internetwork atmosphere where mostly weak fields prevail. Based on recent results from observations and numerical simulations, we attempt to present a comprehensive picture of the atmosphere of the quiet Sun as a highly intermittent and dynamic system.  相似文献   
178.
We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, M?ssbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement. Our results demonstrate the importance of an integrated approach for this type of work. Each technique made a proportionate contribution to the overall effectiveness of our "pseudopayload" for biogenic assessment of samples yet highlighted a number of limitations of current space instrument technology for in situ astrobiology.  相似文献   
179.
Ceylan  Savas  van Driel  Martin  Euchner  Fabian  Khan  Amir  Clinton  John  Krischer  Lion  Böse  Maren  Stähler  Simon  Giardini  Domenico 《Space Science Reviews》2017,211(1-4):595-610

The InSight mission will land a single seismic station on Mars in November 2018, and the resultant seismicity catalog will be a key component for studies aiming to understand the interior structure of the planet. Here, we present a preliminary version of the web services that will be used to distribute the event and station metadata in practice, employing synthetic seismograms generated for Mars using a catalog of expected seismicity. Our seismicity catalog consists of 120 events with double-couple source mechanisms only. We also provide Green’s functions databases for a total of 16 structural models, which are constructed to reflect one-dimensional thin (30 km) and thick (80 km) Martian crust with varying seismic wave speeds and densities, combined with two different profiles for temperature and composition for the mantle. Both the Green’s functions databases and the precomputed seismograms are accessible online. These new utilities allow the researchers to either download the precomputed synthetic waveforms directly, or produce customized data sets using any desired source mechanism and event distribution via our servers.

  相似文献   
180.
The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP3) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP3. A pile driving model has been developed considering all masses of the hammering mechanism of HP3. By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight/HP3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号