首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
航空   11篇
航天技术   18篇
航天   2篇
  2021年   1篇
  2020年   1篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  1991年   1篇
  1985年   2篇
  1984年   4篇
  1982年   3篇
  1981年   4篇
  1966年   1篇
排序方式: 共有31条查询结果,搜索用时 453 毫秒
11.
Although the Mars Express (MEX) does not carry a magnetometer, it is in principle possible to derive the interplanetary magnetic field (IMF) orientation from the three dimensional velocity distribution of pick-up ions measured by the Ion Mass Analyser (IMA) on board MEX because pick-up ions' orbits, in velocity phase space, are expected to gyrate around the IMF when the IMF is relatively uniform on a scale larger than the proton gyroradius. During bow shock outbound crossings, MEX often observed cycloid distributions (two dimensional partial ring distributions in velocity phase space) of protons in a narrow channel of the IMA detector (only one azimuth for many polar angles). We show two such examples. Three different methods are used to derive the IMF orientation from the observed cycloid distributions. One method is intuitive (intuitive method), while the others derive the minimum variance direction of the velocity vectors for the observed ring ions. These velocity vectors are selected either manually (manual method) or automatically using simple filters (automatic method). While the intuitive method and the manual method provide similar IMF orientations by which the observed cycloid distribution is well arranged into a partial circle (representing gyration) and constant parallel velocity, the automatic method failed to arrange the data to the degree of the manual method, yielding about a 30° offset in the estimated IMF direction. The uncertainty of the derived IMF orientation is strongly affected by the instrument resolution. The source population for these ring distributions is most likely newly ionized hydrogen atoms, which are picked up by the solar wind.  相似文献   
12.
The Ultra-Violet/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray bursts in the 170–600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey–Chrétien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.  相似文献   
13.
The present status of the Japanese Penetrator Mission: LUNAR-A   总被引:1,自引:0,他引:1  
The scientific objective of the LUNAR-A Japanese Penetrator Mission is to explore the lunar interior by seismic and heat-flow experiments. Two penetrators containing two-component seismometer and heat-flow probes will be deployed from a spacecraft onto the lunar surface, one on the nearside and the other on the farside of the moon. The data obtained by the penetrators will be transmitted to the ground station by way of the LUNAR-A mother spacecraft orbiting at an altitude of about 200 km. The seismic observations are expected to provide key data on the size of the lunar core, as well as data on the deep mantle structure. The heat-flow measurements at two different sites will also provide important data on the thermal structure and bulk concentrations of heat-generating elements in the Moon. These data will provide much stronger geophysical constraints on the origin and evolution of the Moon than has ever been obtained. The LUNAR-A mission was supposed to be launched in 2004. However, a malfunction of spacecraft subsystem and technical issues for penetrator system occurred during the course of the qualification level test. Therefore, further improvements and some modifications were considered to be required for reliability and robustness. The development of the mother spacecraft was temporarily suspended, while we have put a three-year program into effect to solve the penetrator technology issues.  相似文献   
14.
15.
The precursor associated with a long X-ray burst is interpreted in terms of the stellar envelope expansion. The mass flow driven by the radiation pressure in excess of the local Eddington limit and the grey atmosphere model correctly describe the burst profiles in different energy ranges.  相似文献   
16.
Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth’s discrete aurora not only visualizes the inclination of the Earth’s magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas – field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration – the localized crustal magnetizations at Mars (Acuña et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA’s Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth – characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The “inverted V” energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars – the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars.  相似文献   
17.
18.
19.
Highlights of the results obtained with Japanese X-ray astronomy satellite Hakucho are reviewed. After a brief account of instrumentation (Section 2), some new features of non-bursting, non-pulsating objects are presented (Sections 3–5). The main part of the present review is devoted for X-ray bursts which are found more complex than one might have thought (Sections 6–11). The observation of X-ray pulsar, including a change of spin rate of Vela X-1, is described (Section 12). The main results obtained in the first two years are summarized in Section 13.  相似文献   
20.
Observations of satellite images have shown that the snow melting in mountainous area proceeds more repidly in the east-facing slope of the valley than in the west-facing one. The energy for melting snow consists of the total from the atmosphere and from the solar rays. The diurnal variation of the solar energy into the snow in the east-facing slope differs from that in the west-facing slope. This causes the heighest value of the instantaneous energy for melting snow to occur in the west-facing surface. As one of the reasons for the above tendency, the difference of the heighest value to melt snow may be taken into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号