首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   15篇
航天技术   3篇
航天   3篇
  2010年   1篇
  2008年   2篇
  2007年   6篇
  2004年   1篇
  2000年   1篇
  1997年   2篇
  1995年   3篇
  1991年   1篇
  1985年   2篇
  1978年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
Energetic particles, accelerated in shocks which were associated with recurrent fast solar wind streams, were observed in high heliographic latitudes; fifteen such steams were included in the present study. Intensity variations ranged up to four orders of magnitude. Energy spectra were typically steeper near forward shocks than near reverse shocks. Electrons were observed only lated to the reverse shocks. Composition ratios in accelerated streams resembled those observed in fast CIR's. In periods between the recurrent acceleration regions elemental abundance ratios were similar to those of the anomalous cosmic rays (ACR). The intensity of the accelerated particles declined as the latitude of ULYSSES increased, probably due to the weakening of the shocks.  相似文献   
12.
Ground observations of locally confined, very intense, drifting current systems by the EISCAT magnetometer cross in correlation with GEOS 2 measurements will be explained in terms of kinetic Alfvén waves. In the ground based magnetograms the events are characterized by strong pulsations with amplitudes in the horizontal component up to 1000 nT and periods of about 300s and longer. They occur in the evening hours adjacent to the poleward side of the Harang discontinuity with the onset of a substorm. At the same time the inner edge of the plasma sheet passes the GEOS 2 position, magnetically conjugate to ground stations. The common features of four events during Nov and Dec 1982 will be discussed.  相似文献   
13.
The Solar-Terrestrial Relations Observatory (STEREO) mission addresses critical problems of the physics of explosive disturbances in the solar corona, and their propagation and interactions in the interplanetary medium between the Sun and Earth. The In-Situ-Measurements of Particles and CME Transients (IMPACT) investigation observes the consequences of these disturbances and other transients at 1 AU. The generation of energetic particles is a fundamentally important feature of shock-associated Coronal Mass Ejections (CMEs) and other transients in the interplanetary medium. Multiple sensors within the IMPACT suite measure the particle population from energies just above the solar wind up to hundreds of MeV/nucleon. This paper describes a portion of the IMPACT Solar Energetic Particles (SEP) package, the Suprathermal Ion Telescope (SIT) which identifies the heavy ion composition from the suprathermal through the energetic particle range (~few 10 s of keV/nucleon to several MeV/nucleon). SIT will trace and identify processes that energize low energy ions, and characterize their transport in the interplanetary medium. SIT is a time-of-flight mass spectrometer with high sensitivity designed to derive detailed multi-species particle spectra with a cadence of 60 s, thereby enabling detailed studies of shock-accelerated and other energetic particle populations observed at 1 AU.  相似文献   
14.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
15.
The RAPID spectrometer (Research with Adaptive Particle Imaging Detectors) for the Cluster mission is an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20–400 keV for electrons, 40 keV–1500 keV (4000 keV) for hydrogen, and 10 keV nucl-1–1500 keV (4000 keV) for heavier ions. Novel detector concepts in combination with pin-hole acceptance allow the measurement of angular distributions over a range of 180° in polar angle for either species. Identification of the ionic component (particle mass A) is based on a two-dimensional analysis of the particle's velocity and energy. Electrons are identified by the well-known energy-range relationship. Details of the detection techniques and in-orbit operations are described. Scientific objectives of this investigation are highlighted by the discussion of selected critical issues in geospace.  相似文献   
16.
The IMPACT (In situ Measurements of Particles And CME Transients) investigation on the STEREO mission was designed and developed to provide multipoint solar wind and suprathermal electron, interplanetary magnetic field, and solar energetic particle information required to unravel the nature of coronal mass ejections and their heliospheric consequences. IMPACT consists of seven individual sensors which are packaged into a boom suite, and a SEP suite. This review summarizes the science objectives of IMPACT, the instruments that comprise the IMPACT investigation, the accommodation of IMPACT on the STEREO twin spacecraft, and the overall data products that will flow from the IMPACT measurements. Accompanying papers in this volume of Space Science Reviews highlight the individual sensor technical details and capabilities, STEREO project plans for the use of IMPACT data, and modeling activities for IMPACT (and other STEREO) data interpretation.  相似文献   
17.
The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.  相似文献   
18.
The substorm on March 12, 1991 is studied using the data of ground-based network of magnetometers, all-sky cameras and TV recordings of aurora, and measurements of particle fluxes and magnetic field onboard a satellite in the equatorial plane. The structure of substorm activity and the dynamics of auroral ions of the central plasma sheet (CPS) and energetic quasi-trapped ions related to the substorm are considered in the first part. It is shown that several sharp changes in the fluxes and pitch-angle distribution of the ions which form the substorm ion injection precede a dipolarization of the magnetic field and increases of energetic electrons, and coincide with the activation of aurora registered 20° eastward from the satellite. A conclusion is drawn about different mechanisms of the substorm acceleration (injection) of electrons and ions.  相似文献   
19.
In the first part of this study of the substorm of March 12, 1991, the space-time structure of substrorm disturbance and dynamics of auroral ions were considered. This second part presents an analysis of measurements of auroral electrons onboard the CRRES satellite. It is demonstrated that enhancements of the electron flux (injections) during large-scale and local dipolarizations of the magnetic field are determined by a combination of field-aligned, induction, and betatron mechanisms of acceleration with an effect of displacement of the drift shells of particles. The relative contributions of these mechanisms in relation to the energy of auroral electrons are determined.  相似文献   
20.
Three distinct boundaries are identified from the PICCA cometary ion observations within the innermost part of the coma of comet Halley: (1) the 'cometopause' at a cometocentric distance Rc 1.5×105 km, characterized by the appearance of water-group ions well above background; (2) the 'cold cometary plasma boundary' at Rc 3×104 km, characterized by a sudden and simultaneous decrease in the temperatures of all cometary ions, and (3) the 'ionopause' at Rc 6000 km, characterized by a fast decrease in the intensity of all cometary ions by a factor 3–5. Between the first two boundaries only ions with masses less than 50 amu are present, showing distinct maximum intensities at 18, 32 and 44 amu at the second boundary. Downstream of the second boundary also ions of mass 12, 64, 76, 86 and 100 amu are detected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号