首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2831篇
  免费   2篇
  国内免费   20篇
航空   1379篇
航天技术   1081篇
综合类   12篇
航天   381篇
  2019年   20篇
  2018年   28篇
  2017年   20篇
  2016年   17篇
  2014年   55篇
  2013年   65篇
  2012年   57篇
  2011年   95篇
  2010年   67篇
  2009年   118篇
  2008年   162篇
  2007年   73篇
  2006年   75篇
  2005年   74篇
  2004年   87篇
  2003年   86篇
  2002年   55篇
  2001年   78篇
  2000年   53篇
  1999年   70篇
  1998年   82篇
  1997年   49篇
  1996年   64篇
  1995年   79篇
  1994年   76篇
  1993年   50篇
  1992年   62篇
  1991年   33篇
  1990年   34篇
  1989年   71篇
  1988年   26篇
  1987年   29篇
  1986年   33篇
  1985年   124篇
  1984年   70篇
  1983年   58篇
  1982年   61篇
  1981年   106篇
  1980年   37篇
  1979年   27篇
  1978年   25篇
  1977年   28篇
  1976年   19篇
  1975年   31篇
  1974年   20篇
  1973年   25篇
  1972年   20篇
  1971年   16篇
  1970年   24篇
  1969年   26篇
排序方式: 共有2853条查询结果,搜索用时 0 毫秒
801.
802.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   
803.
The detection search problem, one of distributing limited resources so as to maximize the detection probability in the single-try search for a concealed target with known probability density, is analyzed. Under fairly general assumptions, the optimal search density uniquely exists when the detection index is governed by the law of diminishing returns and another simple regularity condition. Numerical procedure based on the bisection method, which is guaranteed to converge if the solution uniquely exists, may be used to solve for the optimal search density and the associated Lagrange multiplier. When it is not possible to confidently estimate the target a priori probability density, the minimax solution guarantees a positive detection probability at the expense of degradation in performance  相似文献   
804.
The analysis of radar detection systems often requires extensive knowledge of the special functions of applied mathematics, and their computation. Yet, the moments of the detection random variable are often easily obtained. We demonstrate here how to employ a limited number of exactly specified moments to approximate the probability density and distribution functions of various random variables. The approach is to use the technique of Pade approximations (PA) which creates a pole-zero model of the moment generating function (mgf). This mgf is inverted using residues to obtain the densities  相似文献   
805.
The phase gradient autofocus (PGA) technique for phase error correction of spotlight mode synthetic aperture radar (SAR) imagery is examined carefully in the context of four fundamental signal processing steps that constitute the algorithm. We demonstrate that excellent results over a wide variety of scene content, and phase error function structure are obtained if and only if all of these steps are included in the processing. Finally, we show that the computational demands of the fun PGA algorithm do not represent a large fraction of the total image formation problem, when mid to large size images are involved  相似文献   
806.
Altwegg  K.  Balsiger  H.  Geiss  J. 《Space Science Reviews》1999,90(1-2):3-18
The investigation of the volatile material in the coma of comets is a key to understanding the origin of cometary material, the physical and chemical conditions in the early solar system, the process of comet formation, and the changes that comets have undergone during the last 4.6 billion years. So far, in situ investigations of the volatile constituents have been confined to a single comet, namely P/Halley in 1986. Although, the Giotto mission gave only a few hours of data from the coma, it has yielded a surprising amount of new data and has advanced cometary science by a large step. In the present article the most important results of the measurements of the volatile material of Halley's comet are summarized and an overview of the identified molecules is given. Furthermore, a list of identified radicals and unstable molecules is presented for the first time. At least one of the radicals, namely CH2, seems to be present as such in the cometary ice. As an outlook to the future we present a list of open questions concerning cometary volatiles and a short preview on the next generation of mass spectrometers that are being built for the International Rosetta Mission to explore the coma of Comet Wirtanen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
807.
808.
A cosmic-ray detector system (CRS) has been developed for the Voyager mission which will measure the energy spectrum of electrons from 3–110 MeV and the energy spectra and elemental composition of all cosmic-ray nuclei from hydrogen through iron over an energy range from 1–500 MeV/nuc. Isotopes of hydrogen through sulfur will be resolved from 2–75 MeV/nuc. Studies with CRS data will provide information on the energy content, origin and acceleration process, life history, and dynamics of cosmic rays in the galaxy, and contribute to an understanding of the nucleosynthesis of elements in the cosmic-ray sources. Particular emphasis will be placed on low-energy phenomena that are expected to exist in interstellar space and are known to be present in the outer Solar System. This investigation will also add to our understanding of the transport of cosmic rays, Jovian electrons, and low-energy interplanetary particles over an extended region of interplanetary space. A major contribution to these areas of study will be the measurement of three-dimensional streaming patterns of nuclei from H through Fe and electrons over an extended energy range, with a precision that will allow determination of anisotropies down to 1%. The required combination of charge resolution, reliability and redundance has been achieved with systems consisting entirely of solid-state charged-particle detectors.Principal Investigator of the Voyager Cosmic Ray Experiment.  相似文献   
809.
810.
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of ± 0.5 G for the LFM's and ± 20 G for the HFM's, low quantization uncertainty of ± 0.002 ( = 10–5 G) in the most sensitive (± 8 ) LFM range, low sensor RMS noise level of 0.006 , and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Objectives include the study of planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic, field. The interstellar field may also be measured.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号