首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2813篇
  免费   11篇
  国内免费   21篇
航空   1408篇
航天技术   1086篇
综合类   17篇
航天   334篇
  2021年   18篇
  2019年   22篇
  2018年   32篇
  2017年   22篇
  2016年   20篇
  2014年   49篇
  2013年   66篇
  2012年   59篇
  2011年   88篇
  2010年   65篇
  2009年   110篇
  2008年   159篇
  2007年   72篇
  2006年   73篇
  2005年   81篇
  2004年   80篇
  2003年   80篇
  2002年   51篇
  2001年   78篇
  2000年   59篇
  1999年   70篇
  1998年   80篇
  1997年   50篇
  1996年   63篇
  1995年   80篇
  1994年   78篇
  1993年   50篇
  1992年   65篇
  1991年   32篇
  1990年   30篇
  1989年   71篇
  1988年   26篇
  1987年   28篇
  1986年   30篇
  1985年   126篇
  1984年   76篇
  1983年   58篇
  1982年   60篇
  1981年   110篇
  1980年   34篇
  1979年   26篇
  1978年   24篇
  1977年   28篇
  1976年   18篇
  1975年   32篇
  1974年   19篇
  1973年   26篇
  1972年   21篇
  1970年   24篇
  1969年   27篇
排序方式: 共有2845条查询结果,搜索用时 15 毫秒
31.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed.  相似文献   
32.
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   
33.
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20.  相似文献   
34.
From a short observation of GX 5-1 with EXOSAT we have derived information on spectral and temporal behaviour in the energy range 1–20 keV. The source was found to be variable on time scales from 10 s to 1 h. Describing the spectrum one is forced to assume at least two spectral components. The best fit is reached using a spectrum composed of two blackbody functions with typical temperatures 1 keV and 2 keV, corresponding to apparent blackbody radii of 43 km and 11 km, respectively (for a distance of 10 kpc). With respect to the hot component there is evidence for variability in temperature as well as in apparent blackbody radius. No periodic variability has been found over the period range 0.25 s to 2000 s. There is no evidence for an iron emission line.  相似文献   
35.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
36.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
37.
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite.  相似文献   
38.
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.  相似文献   
39.
The basic ideas to model the large solar flares are reviewed and illustrated. Some fundamental properties of potential and non-potential fields in the solar atmosphere are recalled. In particular, we consider a classification of the non-potential fields or, more exactly, related electric currents, including reconnecting current layers. The so-called ‘rainbow reconnection’ model is presented with its properties and predictions. This model allows us to understand main features of large flares in terms of reconnection. We assume that in the two-ribbon flares, like the Bastille-day flare, the magnetic separatrices are involved in a large-scale shear photospheric flow in the presence of reconnecting current layers generated by a converging flow.  相似文献   
40.
Feasibility studies on a multiband communication satellite antenna system and the key technologies involved in devising this system are described. The proposed multiband communication satellite utilizes four frequency bands: Ka (30/20 GHz), Ku (14/12 GHz), C (6/4 GHz), and S (2.6/2.5 GHz). It has six beam configurations, three multibeam and three shaped-beam. The following key technologies are presented: (1) a low-loss frequency selective subreflector (FSR) for compact feeds, (2) a low-loss and broadband frequency selective surface (FSS), and (3) a highly accurate and reliable mesh reflector  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号