全文获取类型
收费全文 | 2664篇 |
免费 | 2篇 |
国内免费 | 19篇 |
专业分类
航空 | 1317篇 |
航天技术 | 1051篇 |
综合类 | 10篇 |
航天 | 307篇 |
出版年
2019年 | 18篇 |
2018年 | 24篇 |
2017年 | 18篇 |
2016年 | 17篇 |
2014年 | 47篇 |
2013年 | 58篇 |
2012年 | 51篇 |
2011年 | 82篇 |
2010年 | 60篇 |
2009年 | 104篇 |
2008年 | 157篇 |
2007年 | 63篇 |
2006年 | 66篇 |
2005年 | 69篇 |
2004年 | 79篇 |
2003年 | 80篇 |
2002年 | 51篇 |
2001年 | 75篇 |
2000年 | 49篇 |
1999年 | 63篇 |
1998年 | 80篇 |
1997年 | 49篇 |
1996年 | 61篇 |
1995年 | 78篇 |
1994年 | 76篇 |
1993年 | 49篇 |
1992年 | 61篇 |
1991年 | 31篇 |
1990年 | 30篇 |
1989年 | 70篇 |
1988年 | 26篇 |
1987年 | 28篇 |
1986年 | 30篇 |
1985年 | 120篇 |
1984年 | 68篇 |
1983年 | 57篇 |
1982年 | 58篇 |
1981年 | 103篇 |
1980年 | 34篇 |
1979年 | 26篇 |
1978年 | 24篇 |
1977年 | 28篇 |
1976年 | 18篇 |
1975年 | 31篇 |
1974年 | 19篇 |
1973年 | 25篇 |
1972年 | 20篇 |
1971年 | 16篇 |
1970年 | 24篇 |
1969年 | 26篇 |
排序方式: 共有2685条查询结果,搜索用时 15 毫秒
211.
G. Reitz H. Bücker R. Beaujean W. Enge R. Facius W. Heinrich T. Ohrndorf E. Schopper 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(12):107-113
The experiment was flown in different locations inside BIORACK on the D1 mission. It contained different plastic detectors (cellulose nitrate, Lexan, and CR 39) and emulsions to measure the high LET components of the radiation environment. For low LET measurements thermoluminescence dosimeters (L iF) were used. The paper gives data about total dose, charge, energy, and LET spectra so far obtained. These data are compared with data of previous spaceflights. 相似文献
212.
H. Bücker R. Facius G. Horneck G. Reitz E. H. Graul H. Berger H. Hffken W. Rüther W. Heinrich R. Beaujean W. Enge 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(12):115-124
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples. 相似文献
213.
H Bucker R Facius 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):305-314
With the advent of a permanent manned space station the longstanding problems of radiation protection in manned spaceflight have acquired an immediacy. This paper endeavors to emphasize the gaps of our knowledge which must be closed for effective radiation protection. The information that is required includes the accurate determination of the exposure inside the space station to the various components of tile ionizing radiation, the evaluation of the biological importance of the different radiation qualities and the depth dose distribution of the less penetrating component. There is also the possibility of an interaction with weightlessness. It is necessary to establish adequate radiation protection standards and a system of dosimetric surveillance. There is a need for studies of possible methods of hardening selective shielding of the space station. Spaceflight experiments, which might contribute to the solution of some of these problems are discussed. 相似文献
214.
H Follmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):33-38
Unlike ribose chemistry, the chemistry of 2-deoxyribose precludes its formation or at least its incorporation into nucleotides under accepted "primordial soup" conditions; therefore RNA and DNA could not develop in parallel during the evolution of protocells. However, deoxyribonucleotides might have been formed abiotically by direct reduction of ribonucleotides in a primitive version of the biochemical pathway. This sequence of events, in which DNA lagged behind RNA in the assembly of genetic information for an unknown--probably short--period of time is suggested by the primitive traits (i.e., nucleotide binding, thiol redox chemistry, and metal ion catalysis) of present-day enzyme systems of deoxyribonucleotide biosynthesis. The reaction should be amenable to experimental study. 相似文献
215.
H.F. Swift R. Bamford R. Chen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(12):219-234
Dual-layer meteroid shields consisting of sacrificial bumper plates spaced some distance outboard from the vehicle hull are the most effective structures yet conceived for protecting space vehicles from supervelocity meteroid impacts. This paper presents a new analysis for designing dual-layer shields. The analysis is based upon energy and momentum conservation, fundamental electromagnetic radiation physics, and observation of results from extensive experimental impact investigations conducted at relatively low velocities (near 7 km/s). One important conclusion is that most of the kinetic energy of a meteoroid striking a dual-layer shield is expended as radiation at the stagnation zone on the face plate of the underlying structure. The analysis includes systematic procedures to evaluate the response of shield designs for a given impact threat. Similar applications of the analysis can be used to support a mathematically rigorous procedure for optimum shield design. The research described here supported the Halley Intercept Mission Project at the Jet Propulsion Laboratory, C.I.T., under Contract No. NAS 7–100, sponsored by the National Aeronautics and Space Administration. 相似文献
216.
Myung-Hee Y. Kim Matthew J. Hayat Alan H. Feiveson Francis A. Cucinotta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions. 相似文献
217.
K R Sridhar J E Finn M H Kliss 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(2):249-255
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant. 相似文献
218.
A. G. Kosovichev T. L. Duvall Jr. A. C. Birch L. Gizon P. H. Scherrer Junwei Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,29(12):289-1910
Dynamical and thermal variations of the internal structure of the Sun can affect the energy flow and result in variations in irradiance at the surface. Studying variations in the interior is crucial for understanding the mechanisms of the irradiance variations. “Global” helioseismology based on analysis of normal mode frequencies, has helped to reveal radial and latitudinal variations of the solar structure and dynamics associated with the solar cycle in the deep interior. A new technique, - “local-area” helioseismology or heliotomography, offers additional potentially important diagnostics by providing three-dimensional maps of the sound speed and flows in the upper convection zone. These diagnostics are based on inversion of travel times of acoustic waves which propagate between different points on the solar surface through the interior. The most significant variations in the thermodynamic structure found by this method are associated with sunspots and complexes of solar activity. The inversion results provide evidence for areas of higher sound speed beneath sunspot regions located at depths of 4–20 Mm, which may be due to accumulated heat or magnetic field concentrations. However, the physics of these structures is not yet understood. Heliotomography also provides information about large-scale stable longitudinal structures in the solar interior, which can be used in irradiance models. This new diagnostic tool for solar variability is currently under development. It will require both a substantial theoretical and modeling effort and high-resolution data to develop new capabilities for understanding mechanisms of solar variability. 相似文献
219.
D. L. Judge H. S. Ogawa D. R. McMullin P. Gangopadhyay J. M. Pap 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,29(12):502-1968
The SOHO Solar EUV Monitor has been in operation since December 1995 onboard the SOHO spacecraft. This instrument is a highly stable transmission grating solar extreme ultraviolet spectrometer. It has made nearly continuous full disk solar irradiance measurements both within an 8 nm bandpass centered at 30.4 nm and throughout the 0.1 to 50 nm solar flux region since launch. The 30.4 nm flux, the 0.1 to 50 nm flux and the extracted soft X-ray (0.1 to 5 nm) flux are presented and compared with the behavior of solar proxies. 相似文献
220.