全文获取类型
收费全文 | 4520篇 |
免费 | 19篇 |
国内免费 | 14篇 |
专业分类
航空 | 2320篇 |
航天技术 | 1694篇 |
综合类 | 21篇 |
航天 | 518篇 |
出版年
2018年 | 54篇 |
2017年 | 37篇 |
2014年 | 64篇 |
2013年 | 100篇 |
2012年 | 75篇 |
2011年 | 125篇 |
2010年 | 91篇 |
2009年 | 151篇 |
2008年 | 242篇 |
2007年 | 91篇 |
2006年 | 98篇 |
2005年 | 107篇 |
2004年 | 130篇 |
2003年 | 147篇 |
2002年 | 83篇 |
2001年 | 114篇 |
2000年 | 90篇 |
1999年 | 87篇 |
1998年 | 138篇 |
1997年 | 91篇 |
1996年 | 117篇 |
1995年 | 131篇 |
1994年 | 151篇 |
1993年 | 86篇 |
1992年 | 121篇 |
1991年 | 56篇 |
1990年 | 56篇 |
1989年 | 133篇 |
1988年 | 47篇 |
1987年 | 55篇 |
1986年 | 74篇 |
1985年 | 173篇 |
1984年 | 115篇 |
1983年 | 106篇 |
1982年 | 112篇 |
1981年 | 155篇 |
1980年 | 66篇 |
1979年 | 47篇 |
1978年 | 44篇 |
1977年 | 41篇 |
1975年 | 53篇 |
1974年 | 39篇 |
1973年 | 46篇 |
1972年 | 40篇 |
1971年 | 43篇 |
1970年 | 38篇 |
1969年 | 45篇 |
1968年 | 30篇 |
1967年 | 30篇 |
1966年 | 30篇 |
排序方式: 共有4553条查询结果,搜索用时 15 毫秒
871.
Deborah L. Domingue Clark R. Chapman Rosemary M. Killen Thomas H. Zurbuchen Jason A. Gilbert Menelaos Sarantos Mehdi Benna James A. Slavin David Schriver Pavel M. Trávníček Thomas M. Orlando Ann L. Sprague David T. Blewett Jeffrey J. Gillis-Davis William C. Feldman David J. Lawrence George C. Ho Denton S. Ebel Larry R. Nittler Faith Vilas Carle M. Pieters Sean C. Solomon Catherine L. Johnson Reka M. Winslow Jörn Helbert Patrick N. Peplowski Shoshana Z. Weider Nelly Mouawad Noam R. Izenberg William E. McClintock 《Space Science Reviews》2014,181(1-4):121-214
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition. 相似文献
872.
S B Curtis E G Luebeck W D Hazelton S H Moolgavkar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):937-944
When applied to the Colorado Plateau miner population, the two-stage clonal expansion (TSCE) model of radiation carcinogenesis predicts that radiation-induced promotion dominates radiation-induced initiation. Thus, according to the model, at least for alpha-particle radiation from inhaled radon daughters, lung cancer induction over long periods of protracted irradiation appears to be dominated by radiation-induced modification of the proliferation kinetics of already-initiated cells rather than by direct radiation-induced initiation (i.e., mutation) of normal cells. We explore the possible consequences of this result for radiation exposures to space travelers on long missions. Still unknown is the LET dependence of this effect. Speculations of the cause of this phenomenon include the suggestion that modification of cell kinetics is caused by a "bystander" effect, i.e., the traversal of normal cells by alpha particles, followed by the signaling of these cells to nearby initiated cells which then modify their proliferation kinetics. 相似文献
873.
K O'Brien H H Sauer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(1):73-80
High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude. 相似文献
874.
O A Kuznetsov C S Brown H G Levine W C Piastuch M M Sanwo-Lewandowski K H Hasenstein 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):651-658
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity. 相似文献
875.
The solar wind termination shock is described as a multi-fluid phenomenon taking into account the magnetohydrodynamic self-interaction of a multispecies plasma consisting of solar wind ions, pick-up ions and shock-generated anomalous cosmic ray particles. The spatial diffusion of these high energy particles relative to the resulting, pressure-modified solar wind flow structure is described by a coupled system of differential equations describing mass-, momentum-, and energy-flow continuities for all plasma components. The energy loss due to escape of energetic particles (MeV) from the precursor into the inner heliosphere is taken into account. We determine the integrated properties of the anomalous cosmic ray gas and the low-energy solar wind. Also the variation of the compression ratio of the shock structure is quantitatively determined and is related to the pick-up ion energization efficiency and to the mean energy of the downstream anomalous cosmic ray particles. The variation of the resulting shock structure and of the solar wind sheath plasma extent beyond the shock is discussed with respect to its consequences for the LISM neutral gas filtration and the threedimensional shape of the heliosphere. 相似文献
876.
普惠公司为JSF研制的F135发动机已完成了系统发展和验证的关键设计评审.今年10月将开始发动机的地面试验。GE和罗-罗公司计划为JSF研制的备选发动机F136将在明年7月在GE公司进行首次试验 相似文献
877.
G D Badhwar V Dudkin T Doke W Atwell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):485-494
The second flight of the International Microgravity Laboratory (IML-2) on Space Shuttle flight STS-65 provided a unique opportunity for the intercomparison of a wide variety of radiation measurement techniques. Although this was not a coordinated or planned campaign, by sheer chance, a number of space radiation experiments from several countries were flown on this mission. There were active radiation measuring instruments from Japan and US, and passive detectors from US, Russia, Japan, and Germany. These detectors were distributed throughout the Space Shuttle volume: payload bay, middeck, flight deck, and Spacelab. STS-65 was launched on July 8, 1994, in a 28.45 degrees x 306 km orbit for a duration of 14 d 17 hr and 55 min. The crew doses varied from 0.935 mGy to 1.235 mGy. A factor of two variation was observed between various passive detectors mounted inside the habitable Shuttle volume. There is reasonable agreement between the galactic cosmic ray dose, dose equivalent and LET spectra measured by the tissue equivalent proportional counter flown in the payload bay with model calculations. There are significant differences in the measurements of LET spectra measured by different groups. The neutron spectrum in the 1-20 MeV region was measured. Using fluence-dose conversion factors, the neutron dose and dose equivalent rates were 11 +/- 2.7 microGy/day and 95 +/- 23.5 microSv/day respectively. The average east-west asymmetry of trapped proton (>3OMeV) and (>60 MeV) dose rate was 3.3 and 1.9 respectively. 相似文献
878.
Johnson WH 《Acta Astronautica》1975,2(1-2):23-30
The early orbital flights, although undertaken with considerable confidence, involved some uncertainty because of the impossibility of simulating under terrestrial conditions all of the conditions encountered in space. However, space-flight achievements by both the American astronauts and Soviet cosmonauts have firmly established that man, if appropriately selected, trained, and protected by suitable life-support systems, can perform efficiently for long periods of time in the hostile environment of space. We know that the side effects of vestibular origin pose important problems in space exploration, and the neurophysiological effects of any extensive, rapid adaptation processes in subgravity states have enabled a better understanding of man's compensatory capabilities. With the successful establishment of orbiting research laboratories, an unparalleled opportunity exists that will undoubtedly enable better understanding of the role played by gravity in normal terrestrial activity, not only as it affects our vestibular physiology, but also as it may or may not concern other systems and at different organizational levels in the body. 相似文献
879.
An analysis is made of the errors in the determination of the position of an emergency transmitter in a satellite-aided search and rescue system. The satellite is assumed to be at a height of 820 km in a near-circular near polar orbit. Short data spans of four minutes or less are used. The error sources considered are measurement noise, transmitter frequency drift, ionospheric effects, and error in the assumed height of the transmitter. The errors are calculated for several different transmitter positions, data rates, and data spans. The only transmitter frequency used was 406 MHz, but the result can be scaled to different frequencies. 相似文献
880.
The significance of external influences on the environment of Earth and its atmosphere has become evident during recent years.
Especially, on time scales of several hundred years, the cosmogenic isotope concentration during the Wolf-, Spoerer-, Maunder-
and Dalton-Minimum indicates an increased cosmic ray flux. Because these grand minima of solar activity coincide with cold
periods, a correlation of the Earth climate with the cosmic ray intensities is plausible. Any quantitative study of the effects
of energetic particles on the atmosphere and environment of the Earth must address their transport to Earth and their interactions
with the Earth’s atmosphere including their filtering by the terrestrial magnetosphere. The first problem is one of the fundamental
problems in modern cosmic ray astrophysics, and corresponding studies began in the 1960s based on Parker’s cosmic ray modulation
theory taking into account diffusion, convection, adiabatic deceleration, and (later) the drift of energetic particles in
the global heliospheric magnetic field. It is well established that all of these processes determining the modulation of cosmic
rays are depending on parameters that are varying with the solar magnetic cycle. Therefore, the galactic cosmic ray intensities
close to Earth is the result of a complex modulation of the interstellar galactic spectrum within the heliosphere. The modern
view of this cosmic ray modulation is summarized in our contribution. 相似文献