首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6582篇
  免费   4篇
  国内免费   29篇
航空   3374篇
航天技术   2232篇
综合类   191篇
航天   818篇
  2021年   38篇
  2018年   80篇
  2017年   43篇
  2016年   47篇
  2014年   109篇
  2013年   137篇
  2012年   141篇
  2011年   207篇
  2010年   143篇
  2009年   247篇
  2008年   287篇
  2007年   152篇
  2006年   135篇
  2005年   139篇
  2004年   159篇
  2003年   193篇
  2002年   213篇
  2001年   247篇
  2000年   124篇
  1999年   170篇
  1998年   205篇
  1997年   131篇
  1996年   182篇
  1995年   211篇
  1994年   209篇
  1993年   128篇
  1992年   160篇
  1991年   78篇
  1990年   89篇
  1989年   168篇
  1988年   75篇
  1987年   85篇
  1986年   69篇
  1985年   230篇
  1984年   162篇
  1983年   145篇
  1982年   155篇
  1981年   221篇
  1980年   81篇
  1979年   65篇
  1978年   69篇
  1977年   52篇
  1976年   53篇
  1975年   70篇
  1974年   52篇
  1973年   44篇
  1972年   64篇
  1971年   57篇
  1970年   50篇
  1969年   52篇
排序方式: 共有6615条查询结果,搜索用时 15 毫秒
261.
Long-term survival of bacterial spores in space.   总被引:8,自引:0,他引:8  
On board of the NASA Long Duration Exposure Facility (LDEF), spores of Bacillus subtilis in monolayers (10(6)/sample) or multilayers (10(8)/sample) were exposed to the space environment for nearly six years and their survival was analyzed after retrieval. The response to space parameters, such as vacuum (10(-6) Pa), solar electromagnetic radiation up to the highly energetic vacuum-ultraviolet range (10(9) J/m2) and/or cosmic radiation (4.8 Gy), was studied and compared to the results of a simultaneously running ground control experiment. If shielded against solar ultraviolet (UV)-radiation, up to 80 % of spores in multilayers survive in space. Solar UV-radiation, being the most deleterious parameter of space, reduces survival by 4 orders of magnitude or more. However, up to 10(4) viable spores were still recovered, even in completely unprotected samples. Substances, such as glucose or buffer salts serve as chemical protectants. With this 6 year study in space, experimental data are provided to the discussion on the likelihood of "Panspermia".  相似文献   
262.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
263.
The northward and southward orientation of the interplanetary magnetic field (IMF) is usually considered as providing the external boundary conditions in the solar wind interaction with the Earth's magnetopause but it is the magnetic field in the magnetosheath that interacts with the Earth's magnetic field. In this paper, we consider the possibility that the wave activity in the foreshock region may affect the magnetic field orientation in the magnetosheath with time scales that might be geomagnetically effective. If magnetosheath magnetic field becomes disturbed on plasma streamlines which are connected to the quasi-parallel bow shock and foreshock, the magnetic field orientation on the inner magnetosheath may differ significantly from the undisturbed IMF. We present a model of dayside reconnection which may occur when the IMF northward and illustrate its effects on the erosion of the magnetopause.  相似文献   
264.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies.  相似文献   
265.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
266.
After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams.  相似文献   
267.
268.
269.
Changes of deoxyribonucleoprotein in the spleen, thymus and liver of rats exposed to wegithlessness or artifical gravity on board biosatellites Cosmos 782 and Cosmos 936 after 20 days of flight were investigated. The level of polydeoxyribonucleotides in the spleen and thymus of rats exposed during the flight to weightlessness increased 4 – 11 hours after landing, suggesting breakdown of a part of the deoxyribonucleoprotein present. The use of artifical gravity prevented this breakdown in the thymus but not in the spleen. The breakdown was accompanied in the majority of cases by a decrease in teh deoxyribonucleoprotein content. We believe the breakdown of deoxyribonucleoprotein is due to a nonspecific stress reaction to the change from the weightless state to that of terrestrial gravity during landing. The polydeoxyribonucleotide level and amount of deoxyribonucleoprotein in the majority of cases returned to normal values during the 25 days of readaptation. No substantial change of deoxyribonucleoprotein was found in the liver. The different findings in the three organs are due to the fact that breakdown of deoxyribonucleoprotein takes place in sensitive cells underlying pycnosis. These cells are found in the spleen and thymus, but not in the liver.  相似文献   
270.
Ariel VI observations of Cygnus X-2 have revealed a rather flat spectrum between 0.1 and 1.5 keV with variable emission at low energy. Of the two conflicting interpretations of this object in terms of i) a distant high-luminosity (Lx 1038 ergs s−1) binary and ii) a nearby low-luminosity (Lx 1035 ergs s−1) degenerate dwarf system, our measurements support the latter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号