首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
航空   19篇
航天技术   12篇
航天   20篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2012年   3篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
21.
Extended exposure to microgravity conditions results in significant bone loss. Coupled with radiation exposure, this phenomenon may place astronauts at a greater risk for mission-critical fractures. In a previous study, we identified a profound and prolonged loss of trabecular bone (29–39%) in mice following exposure to an acute, 2 Gy dose of radiation simulating both solar and cosmic sources. However, because skeletal strength depends on trabecular and cortical bone, accurate assessment of strength requires analysis of both bone compartments. The objective of the present study was to examine various properties of cortical bone in mice following exposure to multiple types of spaceflight-relevant radiation. Nine-week old, female C57BL/6 mice were sacrificed 110 days after exposure to a single, whole body, 2 Gy dose of gamma, proton, carbon, or iron radiation. Femora were evaluated with biomechanical testing, microcomputed tomography, quantitative histomorphometry, percent mineral content, and micro-hardness analysis. Compared to non-irradiated controls, there were significant differences compared to carbon or iron radiation for only fracture force, medullary area and mineral content. A greater differential effect based on linear energy transfer (LET) level may be present: high-LET (carbon or iron) particle irradiation was associated with a decline in structural properties (maximum force, fracture force, medullary area, and cortical porosity) and mineral composition compared to low-LET radiation (gamma and proton). Bone loss following irradiation appears to be largely specific to trabecular bone and may indicate unique biological microenvironments and microdosimetry conditions. However, the limited time points examined and non-haversian skeletal structure of the mice employed highlight the need for further investigation.  相似文献   
22.
We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10?cm cube-format payloads aboard the 5.5?kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650?km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48?h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.  相似文献   
23.
ISRO has developed the PSLV rocket (Polar Spacecraft Launch Vehicle) for polar orbiting satellites up to 1000 kg and is conducting a series of test missions. One of this is the IRS-P3, an remote sensing satellite with German participation. The payload consists of 3 scientific instruments: The wide field sensor WiFS for vegetation monitoring (ISRO), the imaging spectrometer MOS (DLR/Germany) for coastal zone and ocean studies an the X-ray astronomy payload (ISRO). The paper gives technical details and parameters on the launch vehicle, the satellite, the instruments and scientific goals and data utilization.  相似文献   
24.
The Sun?s gravity focus at >550 AU is of interest to astrophysicists including SETI scientists, researchers seeking to image extra-solar planets and others. One method for an extra-solar probe to reach the Sun?s inner gravity focus within a human working lifetime (less than 50 years) is to combine solar and nuclear propulsion techniques. Here, we present a non-optimized probe concept including state-of-the-art solar-sail, radioisotope-electric propulsion and giant-planet gravity assists. Application of radioisotope propulsion allows some cross range capability during and after the powered and cruise phases of the flight to >600 AU. Such a capability is likely necessary to fully utilize the solar gravitational lens effect for SETI and astrophysical observations.  相似文献   
25.
Current technologies could support the deployment of strategic defences that are effective, affordable and stabilizing. With recent developments in space-based interceptors, in particular, it no longer seems to be a question of whether the technologies could be deployed, but whether one wants to deploy them. Missile attacks could not yet be rendered ineffective, but this goal can be approached in stages. The author examines the range of limited applications and describes the financial and technological demands posed by each.  相似文献   
26.
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of that evolution to the planet’s geological history.  相似文献   
27.
Addressing the challenges of Responsive Space and mitigating the risk of schedule slippage in space programs require a thorough understanding of the various factors driving the development schedule of a space system. The present work contributes theoretical and practical results in this direction. A spacecraft is here conceived of as a technology portfolio. The characteristics of this portfolio are defined as its size (e.g., number of instruments), the technology maturity of each instrument and the resulting Technology Readiness Level (TRL) heterogeneity, and their effects on the delivery schedule of a spacecraft are investigated. Following a brief overview of the concept of R&D portfolio and its relevance to spacecraft design, a probabilistic model of the Time-to-Delivery of a spacecraft is formulated, which includes the development, Integration and Testing, and Shipping phases. The Mean-Time-To-Delivery (MTTD) of the spacecraft is quantified based on the portfolio characteristics, and it is shown that the Mean-Time-To-Delivery (MTTD) of the spacecraft and its schedule risk are significantly impacted by decreasing TRL and increasing portfolio size. Finally, the utility implications of varying the portfolio characteristics are investigated, and “portfolio maps” are provided as guides to help system designers identify appropriate portfolio characteristics when operating in a calendar-based design environment (which is the paradigm shift that space responsiveness introduces).  相似文献   
28.
In response to the scientific interest in Jupiter's Galilean moons, NASA and ESA have plans to send orbiting missions to Europa and Ganymede, respectively. The inter-moon transfers of the Jovian system offer obvious advantages in terms of scientific return, but are also challenging to design and optimize due in part to the large, often chaotic, sensitivities associated with repeated close encounters of the planetary moons. The approach outlined in this paper confronts this shortcoming by exploiting the multi-body dynamics with a patched three-body model to enable multiple “resonant-hopping” gravity assists. Initial conditions of unstable resonant orbits are pre-computed and provide starting points for the elusive initial guess associated with the highly nonlinear optimization problem. The core of the optimization algorithm relies on a fast and robust multiple-shooting technique to provide better controllability and reduce the sensitivities associated with the close approach trajectories. The complexity of the optimization problem is also reduced with the help of the Tisserand–Poincaré (T–P) graph that provides a simple way to target trajectories in the patched three-body problem. Preliminary numerical results of inter-moon transfers in the Jovian system are presented. For example, using only 59 m/s and 158 days, a spacecraft can transfer between a close resonant orbit of Ganymede and a close resonant orbit of Europa.  相似文献   
29.
Failure of a single component on-board a spacecraft can compromise the integrity of the whole system and put its entire capability and value at risk. Part of this fragility is intrinsic to the current dominant design of space systems, which is mainly a single, large, monolithic system. The space industry has therefore recently proposed a new architectural concept termed fractionation, or co-located space-based network (SBN). By physically distributing functions in multiple orbiting modules wirelessly connected, this architecture allows the sharing of resources on-orbit (e.g., data processing, downlinks). It has been argued that SBNs could offer significant advantages over the traditional monolithic architecture as a result of the network structure and the separation of sources of risk in the spacecraft. Careful quantitative analyses are still required to identify the conditions under which SBNs can “outperform” monolithic spacecraft. In this work, we develop Markov models of module failures and replacement to quantitatively compare the lifecycle cost and utility of both architectures. We run Monte-Carlo simulations of the models, and discuss important trends and invariants. We then investigate the impact of our model parameters on the existence of regions in the design space in which SBNs “outperform” the monolith spacecraft on a cost, utility, and utility per unit cost basis. Beyond the life of one single spacecraft, this paper compares the cost and utility implications of maintaining each architecture type through successive replacements.  相似文献   
30.
The Normalized Difference Vegetation Index (NDVI) is an important vegetation index, widely applied in research on global environmental and climatic change. However, noise induced by cloud contamination and atmospheric variability impedes the analysis and application of NDVI data. In this work, a simplified data assimilation method is proposed to reconstruct high-quality time-series MODIS NDVI data. We extracted 16-Day L3 Global 1 km SIN Grid NDVI data sets for western China from MODIS vegetation index (VI) products (MOD13A2) for the period 2003–2006. NDVI data in the first three years (2003–2005) were used to generate the background field of NDVI based on a simple three-point smoothing technique, which captures annual features of vegetation change. NDVI data for 2006 were used to test our method. For every time step, the quality assurance (QA) flags of the MODIS VI products were adopted to empirically determine the weight between the background field and NDVI observations. Ultimately, more reliable NDVI data can be produced. The results indicate that the newly developed method is robust and effective in reconstructing high-quality MODIS NDVI time-series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号