首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
航空   22篇
航天技术   12篇
航天   19篇
  2021年   1篇
  2017年   1篇
  2015年   3篇
  2014年   3篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有53条查询结果,搜索用时 78 毫秒
41.
The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on August 3, 2004. The altimeter will measure the round-trip time of flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury’s center of mass. MLA will sample the planet’s surface to within a 1-m range error when the line-of-sight range to Mercury is less than 1,200 km under spacecraft nadir pointing or the slant range is less than 800 km. The altimeter measurements will be used to determine the planet’s forced physical librations by tracking the motion of large-scale topographic features as a function of time. MLA’s laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1,064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of postlaunch testing.  相似文献   
42.
43.
The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated ~9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft’s trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of ?84.6796°, ?48.7093°, with a 1σ uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is ?84.719°, ?49.61°, with a 1σ uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region.  相似文献   
44.
Tetrahedral Robotics for Space Exploration   总被引:2,自引:0,他引:2  
A reconfigurable space filling robotic architecture has a wide range of possible applications. One of the more intriguing possibilities is mobility in very irregular and otherwise impassable terrain. NASA Goddard Space Flight Center is developing the third generation of its addressable reconfigurable technology (ART) tetrahedral robotics architecture. An ART-based variable geometry truss consisting of 12 tetrahedral elements made from 26 smart struts on a wireless network has been developed. The primary goal of this development is the demonstration of a new kind of robotic mobility that can provide access and articulation that complement existing capabilities. An initial set of gaits and other behaviors are being tested, and accommodations for payloads such as sensor and telemetry packages are being studied. Herein, we describe our experience with the ART tetrahedral robotics architecture and the improvements implemented in the third generation of this technology. Applications of these robots to space exploration and the tradeoffs involved with this architecture will be discussed.  相似文献   
45.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
46.
The mathematical modeling of a brushless DC generator is described, as an illustration of the application of diakoptic techniques to the analysis of small-scale electrical power supply systems. Modeling of the generator and its output rectifier is accomplished using an established matrix technique that accounts for the continuously changing conduction pattern of the diode bridge network. The advantages of using diakoptics are discussed together with the main generator linked to its exciter and to the automatic voltage regulator and permanent magnet generator which are often included in a complete unit. A solution algorithm is presented for this overall arrangement and a comparison is made between theoretical and practical results for a typical 3-stage, 4000-rev/min, 10.3-kW, 28-V unit  相似文献   
47.
Life sciences     
Space life sciences research activities are reviewed for the year. Highlights of animal studies were the first long-term flight of an animal enclosure module and an avian development facility on STS-108. Plant research efforts focused on a biomass production system for eventual use on the International Space Station (ISS), the PESTO experiment on ISS, and screening of several salad crop varieties for potential use in space. Health-related studies included the Martian Radiation Environment Experiment (MARIE) on the Mars Odyssey mission, presentation of results from NASA's Biomolecular Physics and Chemistry Program, and research related to human liver cell function in space through an agreement with StelSys. In industry and academia, a memorandum of understanding was signed between NASA and the biotechnology industry to enhance communication between NASA and the industry, expand commercial biotechnology space research and development, and expand formal and informal education of industry and the public regarding biotechnology and space research. NASA selected Purdue University to lead an NSCORT for advanced life support research to develop technologies to enable long-duration planetary mission and sustain human space colonies.  相似文献   
48.
Experience with the Shuttle and free-flying satellites as technology test beds has shown the feasibility and desirability of using space assets as facilities for technology development. Thus, by the time the space station era arrives, technologists will be ready for an accessible engineering facility in space. Along with the scientific and commercial space development communities, the technology development community has been participating in defining requirements for this in-space facility. As the 21st century is approached, it is expected that many flights to the Space Station Freedom will carry one or more RT&E experiments. The experiments are likely to utilize both the pressurized volume, and the external payload attachment facilities. Based on the success of instrumenting the Shuttle itself to obtain ascent and descent aerothermodynamic data a unique, but extremely important, class of experiments will use the space station itself as an experimental vehicle.  相似文献   
49.
There exists a population of defunct satellites in the geo-stationary arc that potentially pose a hazard to current and future operational satellites. These drifting, non-station-kept objects have a variety of ages and sizes, and many are trapped in libration orbits around the Earth?s two gravitational potential wells (the non-spherical nature of the Earth gives rise to two geo-potential wells or “stable points” that affect objects in geostationary and geosynchronous orbits), whereas others were boosted to higher altitudes into so-called “graveyard” orbits.  相似文献   
50.
The five “Time History of Events and Macroscale Interactions during Substorms” (THEMIS) micro-satellites launched on a common carrier by a Delta II, 7925 heavy, on February 17, 2007. This is the fifth launch in the NASA MeDIum class EXplorer (MIDEX) program. In the mission proposal the decision was made to have the University of California Berkeley Space Sciences Laboratory (UCB-SSL) mechanical engineering staff provide all of the spacecraft appendages, in order to meet the short development schedule, and to insure compatibility. This paper describes the systems engineering, design, development, testing, and on-orbit deployment of these boom systems that include: the 1 and 2 meter carbon fiber composite magnetometer booms, the 40 and 50 m tip to tip orthogonal spin-plane wire boom pairs, and the 6.3 m dipole stiff axial booms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号