首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   22篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
  2001年   5篇
  1999年   4篇
  1995年   6篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有22条查询结果,搜索用时 218 毫秒
21.
High temporal resolution measurements of solar wind electrons at the Earth's bow shock on the dawn side have been made with the LASL/MPI fast plasma experiments on ISEE-1 and 2. One dimensional, 1-d, temperatures, T e , and densities, N e , are obtained every 0.3 s and 2-d values are obtained every 3 s. Profiles of T e and N e at the shock usually are found to be similar to one another and also to the profile of the magnetic field magnitude. The time scale of electron thermalization varies from about 0.5 s to greater than 1 min, depending importantly on the shock motion and the orientation of the magnetic field. Typical thermalization times from 05:00–12:00 LT are 10 s, considerably shorter than proton thermalization times at the shock. This time scale corresponds to a distance of 100 km, comparable to but somewhat larger than the typical ion inertial length. The electron thermalization times are significantly longer than some of the values frequently cited in the past. At the end of the electron thermalization there typically is an overshoot in electron thermal pressure followed by an undershoot which give the pressure profile of the shock the appearance of a damped wave. Ion thermalization is essentially completed by the time the electron pressure wave is damped. The most probable value of the electron temperature ratio across the shock is 1.7, and this value is relatively independent of the Sun-Earth-satellite angle, ss , for ss between 25° and 100°.The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the Department of Energy.By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.  相似文献   
22.
Gosling  J.T.  McComas  D.J.  Skoug  R.M.  Forsyth  R.J. 《Space Science Reviews》2001,97(1-4):189-192
Ulysses observed well-defined stream interaction regions, SIRs, associated with solar wind stream structure up to a latitude of S65° and shocks to at least a latitude of S71° during the second polar orbit. These SIRs and shocks produced a substantial heliospheric processing of the solar wind. Only a subset of the SIRs recurred on successive solar rotations and only about half of the well-defined SIRs observed poleward of S9.8° were bounded by forward-reverse shock pairs. The majority of the SIRs had local magnetic topologies and azimuthal orientations similar to, but meridional tilts different from, those observed in the first polar orbit when most SIRs corotated with the Sun. The irregular meridional tilts presumably were a consequence of a complex coronal geometry and the temporally evolving nature of the solar wind flow at this time. A lack of reverse shocks poleward of S54° (with one exception) and a lack of well defined SIRs poleward of S65° is evidence that SIRs develop more slowly with distance at high latitudes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号