首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
航空   19篇
航天技术   4篇
  2021年   1篇
  2011年   2篇
  2010年   4篇
  2008年   6篇
  2007年   6篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1985年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
11.
Early observations by the THEMIS ESA plasma instrument have revealed new details of the dayside magnetosphere. As an introduction to THEMIS plasma data, this paper presents observations of plasmaspheric plumes, ionospheric ion outflows, field line resonances, structure at the low latitude boundary layer, flux transfer events at the magnetopause, and wave and particle interactions at the bow shock. These observations demonstrate the capabilities of the plasma sensors and the synergy of its measurements with the other THEMIS experiments. In addition, the paper includes discussions of various performance issues with the ESA instrument such as sources of sensor background, measurement limitations, and data formatting problems. These initial results demonstrate successful achievement of all measurement objectives for the plasma instrument.  相似文献   
12.
The study of the neutral sheet is of fundamental importance in understanding the dynamics of the Earth’s magnetosphere. From the earliest observation of the magnetotail, it has been found that the neutral sheet frequently appears to be in motion due to changing solar wind conditions and geomagnetic activity. Multiple crossings of the neutral sheet by spacecraft have been attributed to a flapping motion of the neutral sheet in the north–south direction, a wavy profile either along the magnetotail or the dawn–dusk direction. Cluster observations have revealed that the flapping motions of the Earth’s magnetotail are of internal origin and that kink-like waves are emitted from the central part of the tail and propagate toward the tail flanks. This flapping motion is shown here to propagate at an angle of ∼45° with xGSM. A possible assumption that the flapping could be created by a wake travelling away from a fast flow in the current sheet is rejected. Other waves in the magnetotail are found in the ULF range. One conjunction event between Cluster and DoubleStar TC1 is presented where all spacecraft show ULF wave activity at a period of approximately 5 min during fast Earthward flow. These waves are shown to be Kelvin–Helmholtz waves on the boundaries of the flow channel. Calculations show that the conversion of flow energy into magnetic energy through the Kelvin–Helmholtz instability can contribute to a significant part of flow breaking between Cluster and DoubleStar TC1.  相似文献   
13.
The Hermean magnetosphere is likely to contain a number of wave phenomena. We briefly review what little is known so far about fields and waves around Mercury. We further discuss a number of possible phenomena, including ULF pulsations, acceleration-related radiation, bow shock waves, bremsstrahlung (or braking radiation), and synchrotron radiation. Finally, some predictions are made as to the likelihood that some of these types of wave emission exist.  相似文献   
14.
The interaction of planets with the solar wind produces a diversity of current systems, yet these can be classified into only a few different types, which include ionospheric currents, currents carried by magnetospheric boundaries like the magnetopause or ionopause, magnetotail currents, and currents flowing inside the magnetospheres, like ring currents, plasma sheet currents and currents aligned to the magnetic field lines (or field-aligned currents).  相似文献   
15.
The dual technique magnetometer system onboard the Cassini orbiter is described. This instrument consists of vector helium and fluxgate magnetometers with the capability to operate the helium device in a scalar mode. This special mode is used near the planet in order to determine with very high accuracy the interior field of the planet. The orbital mission will lead to a detailed understanding of the Saturn/Titan system including measurements of the planetary magnetosphere, and the interactions of Saturn with the solar wind, of Titan with its environments, and of the icy satellites within the magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
16.
The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma environment of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes optimum use of the available mass and power resources.  相似文献   
17.
The Upgraded CARISMA Magnetometer Array in the THEMIS Era   总被引:1,自引:0,他引:1  
This review describes the infrastructure and capabilities of the expanded and upgraded Canadian Array for Realtime InvestigationS of Magnetic Activity (CARISMA) magnetometer array in the era of the THEMIS mission. Formerly operated as the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS) magnetometer array until 2003, CARISMA capabilities have been extended with the deployment of additional fluxgate magnetometer stations (to a total of 28), the upgrading of the fluxgate magnetometer cadence to a standard data product of 1 sample/s (raw sampled 8 samples/s data stream available on request), and the deployment of a new network of 8 pairs of induction coils (100 samples per second). CARISMA data, GPS-timed and backed up at remote field stations, is collected using Very Small Aperture Terminal (VSAT) satellite internet in real-time providing a real-time monitor for magnetic activity on a continent-wide scale. Operating under the magnetic footprint of the THEMIS probes, data from 5 CARISMA stations at 29–30 samples/s also forms part of the formal THEMIS ground-based observatory (GBO) data-stream. In addition to technical details, in this review we also outline some of the scientific capabilities of the CARISMA array for addressing all three of the scientific objectives of the THEMIS mission, namely: 1. Onset and evolution of the macroscale substorm instability, 2. Production of storm-time MeV electrons, and 3. Control of the solar wind-magnetosphere coupling by the bow shock, magnetosheath, and magnetopause. We further discuss some of the compelling questions related to these three THEMIS mission science objectives which can be addressed with CARISMA.  相似文献   
18.
The Rosetta Mission: Flying Towards the Origin of the Solar System   总被引:1,自引:0,他引:1  
The ROSETTA Mission, the Planetary Cornerstone Mission in the European Space Agency’s long-term programme Horizon 2000, will rendezvous in 2014 with comet 67P/Churyumov-Gerasimenko close to its aphelion and will study the physical and chemical properties of the nucleus, the evolution of the coma during the comet’s approach to the Sun, and the development of the interaction region of the solar wind and the comet, for more than one year until it reaches perihelion. In addition to the investigations performed by the scientific instruments on board the orbiter, the ROSETTA lander PHILAE will be deployed onto the surface of the nucleus. On its way to comet 67P/Churyumov-Gerasimenko, ROSETTA will fly by and study the two asteroids 2867 Steins and 21 Lutetia.  相似文献   
19.
20.
We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon??s Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at ??3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang??E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号