首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   0篇
  国内免费   1篇
航空   80篇
航天技术   33篇
航天   26篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   11篇
  2008年   3篇
  2007年   8篇
  2006年   1篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   12篇
  1996年   4篇
  1995年   6篇
  1993年   1篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1972年   1篇
  1970年   2篇
  1968年   4篇
  1967年   1篇
  1966年   2篇
  1963年   2篇
排序方式: 共有139条查询结果,搜索用时 109 毫秒
131.
Gloeckler  G.  Cain  J.  Ipavich  F.M.  Tums  E.O.  Bedini  P.  Fisk  L.A.  Zurbuchen  T.H.  Bochsler  P.  Fischer  J.  Wimmer-Schweingruber  R.F.  Geiss  J.  Kallenbach  R. 《Space Science Reviews》1998,86(1-4):497-539
The Solar Wind Ion Composition Spectrometer (SWICS) and the Solar Wind Ions Mass Spectrometer (SWIMS) on ACE are instruments optimized for measurements of the chemical and isotopic composition of solar and interstellar matter. SWICS determines uniquely the chemical and ionic-charge composition of the solar wind, the thermal and mean speeds of all major solar wind ions from H through Fe at all solar wind speeds above 300 km s−1 (protons) and 170 km s−1 (Fe+16), and resolves H and He isotopes of both solar and interstellar sources. SWICS will measure the distribution functions of both the interstellar cloud and dust cloud pickup ions up to energies of 100 keV e−1. SWIMS will measure the chemical, isotopic and charge state composition of the solar wind for every element between He and Ni. Each of the two instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made with SWICS and SWIMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition, SWICS and SWIMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; (vii) the physics of the pickup process of interstellar He in the solar wind; and (viii) the spatial distribution and characteristics of sources of neutral matter in the inner heliosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
132.
A recent effort to develop single-gimbal variable-speed control moment gyroscopes (VSCMGs) for a combined energy storage and attitude control subsystem (ESACS) on small satellites has culminated in laboratory validation of the concept. A single actuator prototype comprised of a cutting-edge Carbon Fiber rotor and COTS motor/generator components has been developed, balanced, bench tested, and integrated onto a spherical air-bearing structure. This structure is used to demonstrate the primary capability of a VSCMG to act as a dynamo whilst simultaneously changing a spacecraft's orientation in a controlled fashion. As originally predicted, the actuator's flywheel spins up when energy is supplied (supported via a direct energy transfer power architecture), then spins down when the energy source is removed, porting the energy released to run a resistive load.The work presented gives an overview of the governing principles of the technology, addresses the underlying mission and design requirements, and presents the prototype design. Then, effectiveness of the prototype integrated on a three-axis test article is presented along with its associated test data. Finally, discussion of these results and identification of future research concludes the work. The benefits of this technology for future space missions are that system consolidation permits mass reduction, higher instantaneous peak power is available as compared to conventional secondary battery systems, state-of-charge measurement is readily available from wheel speed feedback, and torque amplification through gimballing permits efficient actuator control. The technology demonstrated is exciting and leaves the door open for future development via inclusion of magnetic levitation.  相似文献   
133.
134.
We have carried out a numerical investigation of the coupled gravitational and non-gravitational perturbations acting on Earth satellite orbits in an extensive grid, covering the whole circumterrestrial space, using an appropriately modified version of the SWIFT symplectic integrator, which is suitable for long-term (120?years) integrations of the non-averaged equations of motion. Hence, we characterize the long-term dynamics and the phase-space structure of the Earth-orbiter environment, starting from low altitudes (400?km) and going up to the GEO region and beyond. This investigation was done in the framework of the EC-funded “ReDSHIFT” project, with the purpose of enabling the definition of passive debris removal strategies, based on the use of physical mechanisms inherent in the complex dynamics of the problem (i.e., resonances). Accordingly, the complicated interactions among resonances, generated by different perturbing forces (i.e., lunisolar gravity, solar radiation pressure, tesseral harmonics in the geopotential) are accurately depicted in our results, where we can identify the regions of phase space where the motion is regular and long-term stable and regions for which eccentricity growth and even instability due to chaotic behavior can emerge. The results are presented in an “atlas” of dynamical stability maps for different orbital zones, with a particular focus on the (drag-free) range of semimajor axes, where the perturbing effects of the Earth’s oblateness and lunisolar gravity are of comparable order. In some regions, the overlapping of the predominant lunisolar secular and semi-secular resonances furnish a number of interesting disposal hatches at moderate to low eccentricity orbits. All computations were repeated for an increased area-to-mass ratio, simulating the case of a satellite equipped with an on-board, area-augmenting device. We find that this would generally promote the deorbiting process, particularly at the transition region between LEO and MEO. Although direct reentry from very low eccentricities is very unlikely in most cases of interest, we find that a modest “delta-v” (ΔV) budget would be enough for satellites to be steered into a relatively short-lived resonance and achieve reentry into the Earth’s atmosphere within reasonable timescales (50?years).  相似文献   
135.
We are developing a system to predict the arrival of interplanetary (IP) shocks at the Earth. These events are routinely detected by the Electron, Proton, and Alpha Monitor (EPAM) instrument aboard NASA’s ACE spacecraft, which is positioned at Lagrange Point 1 (L1). In this work, we use historical EPAM data to train an IP shock forecasting algorithm. Our approach centers on the observation that these shocks are often preceded by identifiable signatures in the energetic particle intensity data. Using EPAM data, we trained an artificial neural network to predict the time remaining until the shock arrival. After training this algorithm on 37 events, it was able to forecast the arrival time for 19 previously unseen events. The average uncertainty in the prediction 24 h in advance was 8.9 h, while the uncertainty improved to 4.6 h when the event was 12 h away. This system is accessible online, where it provides predictions of shock arrival times using real-time EPAM data.  相似文献   
136.
The kinetic properties of heavy ions in the solar wind are known to behave in a well organized way under most solar wind flow conditions: Their speeds are all equal and faster than that of hydrogen by about the local Alfvén speed, and their kinetic temperatures are proportional to their mass. The simplicity of these properties points to a straightforward physical interpretation; wave-particle interactions with Alfvén waves are the probable cause. With the SWICS sensor on board Ulysses, it is now possible to investigate the kinetic properties of many more ion species than before. Furthermore, the transition of Ulysses into the fast stream emanating from the south polar coronal hole since 1992 allows us to study these properties both in the slow, interstream solar wind, as well as in an unambiguously identified fast stream. We present data from SWICS/Ulysses on the dominant ions of He, C, O, Ne, and Mg. As a result we find that, both in the slow wind and in fast streams, the isotachic property is obeyed even better than it could be determined by the ICI instrument on ISEE-3. The mass proportionality ofT kin is also shown to hold for these ions, including the newly identified C and Mg.  相似文献   
137.
Avionics and electronic equipment installed in aircraft and air breathing missiles are required to operate without upset or damage when subjected to EM environments caused by lightning, NEMP, and Intrasystems transients. To simplify the design effort required to protect electronic equipment and minimize overlapping transient requirements and qualification tests, unified test requirements and procedures are needed. The goal of these unified test procedures would be to insure a known susceptibility level for each newly designed electronic Line Replaceable Unit (LRU). Ten avionics equipments in current Air Force inventory were tested for the purpose of developing unified procedure test methods. Operating LRUs were subjected to transients using common mode cable current (CMCC), groung potentials and chatteriing relay cable injection methods. Based on observed test results and review of current test requirements, test methods and test levels for unified test procedures for power-on transient tests of avionics equipment have been formulated.  相似文献   
138.
139.
Using data from the CHEM instrument on the AMPTE/CCE spacecraft, we follow the development of the ring current energy spectra (1–300 keV/e) of the ion species H+, O+, He+, and He++ in the post-noon and pre-noon local time sectors during the geomagnetic storm of February 1986. By comparing displays of phase space density, f, vs. magnetic moment, μ, we can distinguish between enhancements due to newly injected ions and those due to adiabatic energization of a pre-existing population. In both the local time sectors, the initial drop in Dst is associated with enhanced phase space densities of all species. The spectra observed during the pass when the Dst dropped to a minimem of −312 nT show a strong local time asymmetry. In the post-noon sector, the spectra showed the influx of a new population of ions, rich in O+ and He++. In the pre-noon sector, the flux increase was consistent with adiabatic energization of the ion population injected earlier in the storm. This local time difference is consistent with a greatly enhanced convection electric field which brings a new population from the magnetotail to the post-noon, but not the pre-noon local time sector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号