全文获取类型
收费全文 | 71篇 |
免费 | 1篇 |
专业分类
航空 | 41篇 |
航天技术 | 17篇 |
航天 | 14篇 |
出版年
2021年 | 1篇 |
2016年 | 2篇 |
2014年 | 1篇 |
2013年 | 5篇 |
2012年 | 2篇 |
2011年 | 4篇 |
2010年 | 2篇 |
2009年 | 5篇 |
2008年 | 6篇 |
2006年 | 2篇 |
2005年 | 4篇 |
2003年 | 1篇 |
2001年 | 3篇 |
2000年 | 6篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1995年 | 7篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1975年 | 1篇 |
1972年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有72条查询结果,搜索用时 15 毫秒
41.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted. 相似文献
42.
Jill Tarter Peter Backus Gary Heiligman John Dreher Sam LaRoque Project Phoenix Team 《Acta Astronautica》2000,46(10-12)
During 16 weeks of continuous SETI observing at the Parkes Observatory in New South Wales, Australia, a set of time-averaged data with 643 Hz resolution were recorded and returned to the SETI Institute for post-processing. These data are the 14 second (10 frame) average powers in each of 15,552 “subband” channels covering 10 MHz of the spectrum in both right and left circular polarizations that were used by the signal detection hardware to baseline and threshold the 1 Hz high resolution SETI spectra. The observations covered frequencies from 1.2 to 3 GHz, tracking 209 stellar targets across the sky. The data at each frequency were averaged over all directions and then interrogated to attempt to determine the prevalence of radio frequency interference (RFI). Estimates were made for the probability of encountering RFI at a particular frequency. Particular attention has been paid to those portions of the spectrum that are allocated as primary use status, or footnote protection for radioastronomy. This sixteen-week snapshot of the RFI situation at Parkes is by now out of date. Unfortunately, a year later, the situation has undoubtedly worsened. 相似文献
43.
Nikolai V. Pogorelov Jacob Heerikhuisen Gary P. Zank Jeremy J. Mitchell Iver H. Cairns 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(11):1337-1344
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed. 相似文献
44.
Ronald L. Moore Alphonse C. Sterling G. Allen Gary Jonathan W. Cirtain David A. Falconer 《Space Science Reviews》2011,160(1-4):73-94
The observed magnetic field configuration and signatures of reconnection in the large solar magnetic eruptions that make major flares and coronal mass ejections and in the much smaller magnetic eruptions that make X-ray jets are illustrated with cartoons and representative observed eruptions. The main reconnection signatures considered are the imaged bright emission from the heated plasma on reconnected field lines. In any of these eruptions, large or small, the magnetic field that drives the eruption and/or that drives the buildup to the eruption is initially a closed bipolar arcade. From the form and configuration of the magnetic field in and around the driving arcade and from the development of the reconnection signatures in coordination with the eruption, we infer that (1) at the onset of reconnection the reconnection current sheet is small compared to the driving arcade, and (2) the current sheet can grow to the size of the driving arcade only after reconnection starts and the unleashed erupting field dynamically forces the current sheet to grow much larger, building it up faster than the reconnection can tear it down. We conjecture that the fundamental reason the quasi-static pre-eruption field is prohibited from having a large current sheet is that the magnetic pressure is much greater than the plasma pressure in the chromosphere and low corona in eruptive solar magnetic fields. 相似文献
45.
Space Science Reviews - 相似文献
46.
M.G. Henderson G.D. Reeves A.M. Jorgensen H.E. Spence L.A. Frank J.B. Sigwarth J.F. Fennell J.L. Roeder J.B. Blake K. Yumoto S. Bourdarie 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(12):2407-2416
The CEPPAD Imaging Proton Spectrometer on the POLAR spacecraft has proven to perform very well as an Energetic Neutral (ENA) atom imager, despite the fact that it was designed primarily for measuring energetic ions in-situ. ENAs emitted from the ring current can be detected during storm- as well as quiet-time conditions and can be monitored continuously for many hours at a time when Polar is situated in the polar cap. In addition, we are able to routinely detect ‘bursts’ of ENA emissions in response to substorm-associated ion injections. In this paper, we present ENA images of a single such event together with global auroral imager data from the POLAR VIS instrument. LANL geosynchronous energetic particle data, and ground magnetic Pi2 data in order to establish that such bursts are indeed caused by substorm injections. 相似文献
47.
Mars Science Laboratory Mission and Science Investigation 总被引:5,自引:0,他引:5
John P. Grotzinger Joy Crisp Ashwin R. Vasavada Robert C. Anderson Charles J. Baker Robert Barry David F. Blake Pamela Conrad Kenneth S. Edgett Bobak Ferdowski Ralf Gellert John B. Gilbert Matt Golombek Javier Gómez-Elvira Donald M. Hassler Louise Jandura Maxim Litvak Paul Mahaffy Justin Maki Michael Meyer Michael C. Malin Igor Mitrofanov John J. Simmonds David Vaniman Richard V. Welch Roger C. Wiens 《Space Science Reviews》2012,170(1-4):5-56
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck. 相似文献
48.
M. Viton M.J.P. Sivan M.G. Courtes M.A. Gary R. Decher 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(3):207-210
Deep 66° field photographs of the sky have been taken by the SL - 1 Very Wide Field Camera (experiment 1-ES-022) at 1650, 1930 and 2530 Å, with a limiting magnitude of 9.3 at 1930 Å. A 1,2 × 2,4Kpc ultraviolet extension of the Shapley's wing of the small Magellanic Cloud is revealed. 相似文献
49.
B. Wilken W. I. Axford I. Daglis P. Daly W. GÜTTLER W. H. Ip A. Korth G. Kremser S. Livi V. M. Vasyliunas J. Woch D. Baker R. D. Belian J. B. Blake J. F. Fennell L. R. Lyons H. Borg T. A. Fritz F. Gliem R. Rathje M. Grande D. Hall K. KecsuemÉTY S. Mckenna-LAWLOR K. Mursula P. Tanskanen Z. Pu I. Sandahl E. T. Sarris M. Scholer M. Schulz F. SØRASS S. Ullaland 《Space Science Reviews》1997,79(1-2):399-473
The RAPID spectrometer (Research with Adaptive Particle Imaging Detectors) for the Cluster mission is an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20–400 keV for electrons, 40 keV–1500 keV (4000 keV) for hydrogen, and 10 keV nucl-1–1500 keV (4000 keV) for heavier ions. Novel detector concepts in combination with pin-hole acceptance allow the measurement of angular distributions over a range of 180° in polar angle for either species. Identification of the ionic component (particle mass A) is based on a two-dimensional analysis of the particle's velocity and energy. Electrons are identified by the well-known energy-range relationship. Details of the detection techniques and in-orbit operations are described. Scientific objectives of this investigation are highlighted by the discussion of selected critical issues in geospace. 相似文献
50.
A direct fusion drive for rocket propulsion 总被引:1,自引:0,他引:1
Yosef S. Razin Gary Pajer Mary Breton Eric Ham Joseph Mueller Michael Paluszek Alan H. Glasser Samuel A. Cohen 《Acta Astronautica》2014
The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium–helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma?s Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun–Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of 3He. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg. 相似文献