全文获取类型
收费全文 | 5489篇 |
免费 | 9篇 |
国内免费 | 12篇 |
专业分类
航空 | 2643篇 |
航天技术 | 1973篇 |
综合类 | 21篇 |
航天 | 873篇 |
出版年
2021年 | 33篇 |
2018年 | 74篇 |
2017年 | 66篇 |
2016年 | 54篇 |
2014年 | 83篇 |
2013年 | 131篇 |
2012年 | 107篇 |
2011年 | 192篇 |
2010年 | 139篇 |
2009年 | 193篇 |
2008年 | 281篇 |
2007年 | 132篇 |
2006年 | 100篇 |
2005年 | 149篇 |
2004年 | 162篇 |
2003年 | 175篇 |
2002年 | 108篇 |
2001年 | 160篇 |
2000年 | 91篇 |
1999年 | 106篇 |
1998年 | 156篇 |
1997年 | 111篇 |
1996年 | 117篇 |
1995年 | 158篇 |
1994年 | 201篇 |
1993年 | 100篇 |
1992年 | 132篇 |
1991年 | 55篇 |
1990年 | 65篇 |
1989年 | 122篇 |
1988年 | 52篇 |
1987年 | 54篇 |
1986年 | 81篇 |
1985年 | 187篇 |
1984年 | 151篇 |
1983年 | 136篇 |
1982年 | 122篇 |
1981年 | 204篇 |
1980年 | 62篇 |
1979年 | 56篇 |
1978年 | 54篇 |
1977年 | 53篇 |
1976年 | 40篇 |
1975年 | 53篇 |
1974年 | 49篇 |
1973年 | 46篇 |
1972年 | 60篇 |
1971年 | 48篇 |
1970年 | 36篇 |
1969年 | 42篇 |
排序方式: 共有5510条查询结果,搜索用时 15 毫秒
531.
T. Sbarrato L. Foschini G. Ghisellini F. Tavecchio 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The γ-ray emission of blazar jets shows a pronounced variability and this feature provides limits to the size and to the speed of the emitting region. We study the γ-ray variability of bright blazars using data from the first 18 months of activity of the Large Area Telescope on the Fermi Gamma-Ray Space Telescope. From the daily light-curves of the blazars characterized by a remarkable activity, we firstly determine the minimum variability time-scale, giving an upper limit for the size of the emitting region of the sources, assumed to be spheroidal blobs in relativistic motion. These regions must be smaller than ∼10−3 parsec. Another interesting time-scale is the duration of the outbursts. We conclude that they cannot correspond to radiation produced by a single blob moving relativistically along the jet, but they are either the signature of emission from a standing shock extracting energy from a modulated jet, or the superposition of a number of flares occurring on a shorter time-scale. We also derive lower limits on the bulk Lorentz factor needed to make the emitting region transparent for gamma-rays interacting through photon–photon collisions. 相似文献
532.
Devajyoti Dutta Sanjay Sharma G.K. Sen B.A.M. Kannan S. Venketswarlu R.M. Gairola J. Das G. Viswanathan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
By using a Doppler Weather Radar (DWR) at Shriharikota (13.66°N & 80.23°E), an Artificial Neural Network (ANN) based technique is proposed to improve the accuracy of rain intensity estimation. Three spectral moments of a Doppler spectra are utilized as an input data to an ANN. Rain intensity, as measured by the tipping bucket rain gauges around the DWR station, are considered as a target values for the given inputs. Rain intensity as estimated by the developed ANN model is validated by the rain gauges measurements. With the help of a developed technique, reasonable improvement in the estimation of rain intensity is observed. By using the developed technique, root mean square error and bias are reduced in the range of 34–18% and 17–3% respectively, compared to Z–R approach. 相似文献
533.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case
with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial
regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and
active region compositions and the transition region composition is frequently different from the coronal composition along
the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP
O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions
and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R
⊙. 相似文献
534.
M.D. Paton G. Kargl A.J. Ball S.F. Green A. Hagermann N.I. Kömle M. Thiel J.C. Zarnecki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The Philae lander is part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko. It will use a harpoon like device to anchor itself onto the surface. The anchor will perhaps reach depths of 1–2 m. In the anchor is a temperature sensor that will measure the boundary temperature as part of the MUPUS experiment. As the anchor attains thermal equilibrium with the comet ice it may be possible to extract the thermal properties of the surrounding ice, such as the thermal diffusivity, by using the temperature sensor data. The anchor is not an optimal shape for a thermal probe and application of analytical solutions to the heat equation is inappropriate. We prepare a numerical model to fit temperature sensor data and extract the thermal diffusivity. Penetrator probes mechanically compact the material immediately surrounding them as they enter the target. If the thermal properties, composition and dimensions of the penetrator are known, then the thermal properties of this pristine material may be recovered although this will be a challenging measurement. We report on investigations, using a numerical thermal model, to simulate a variety of scenarios that the anchor may encounter and how they will affect the measurement. 相似文献
535.
Loehr J. Siskaninetz W. Wiemeri J. Feld S. 《Aerospace and Electronic Systems Magazine, IEEE》1998,13(4):9-12
Avionic information processing and transmission requirements are increasing geometrically, with no end in sight, The only feasible way to meet them is to incorporate fiber-optic communication systems into avionic platforms, Such systems can be employed to replace standard electronic components, to augment existing systems, or to enable new technologies. In this paper, we survey the field of low-power communication systems from the avionics engineering perspective. We review the fundamental merits of optical fiber for information transmission and discuss various information modulation schemes. These modulation techniques determine the performance requirements for laser transmitters, We describe the horizontal- and vertical-cavity semiconductor lasers currently available for these systems, and measure their performance against the additional environmental constraints of avionics platforms. Finally, we outline expected near- and far-term trends in system and device development 相似文献
536.
Q. Liu Z. Wu M. Zhu W.Q. Xu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The increase of balloon applications makes it necessary for a comprehensive understanding of the thermal and dynamic performance of scientific balloons. This paper proposed a novel numerical model to investigate the thermal and dynamic characteristics of scientific balloon in both ascending and floating conditions. The novel model consists of a dynamic model and thermal model, the dynamic model was solved numerically by a computer program developed with Matlab/Simulink to calculate the velocity and trajectory, the thermal model was solved by the Fluent program to find out the balloon film temperature distribution and inner Helium gas velocity and temperature field. These models were verified by comparing the numerical results with experimental data. Then the thermal and dynamic behavior of a scientific balloon in a real environment were simulated and discussed in details. 相似文献
537.
J. P. Cox J. C. Wheeler C. J. Hansen D. S. King A. N. Cox S. W. Hodson 《Space Science Reviews》1980,27(3-4):529-535
The radial pulsations of very luminous, low-mass models (L/M 104, solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. We find that there are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars. 相似文献
538.
M. Nelson W.F. DempsterJ.P. Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(5):675-683
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced (“Mars on Earth®”) in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An “Earth to Mars” project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process. 相似文献
539.
M. Nelson W.F. DempsterJ.P. Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(5):787-797
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term “modular biospheres”, have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system “metabolism” and therefore are essentially a “mini-world”. Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment. 相似文献
540.
H. Fuke J.E. Koglin T. Yoshida T. Aramaki W.W. Craig L. Fabris F. Gahbauer C.J. Hailey F.J. Jou N. Madden K. Mori H.T. Yu K.P. Ziock 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2056-2060
We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza–Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon. 相似文献