全文获取类型
收费全文 | 8048篇 |
免费 | 24篇 |
国内免费 | 26篇 |
专业分类
航空 | 3678篇 |
航天技术 | 2955篇 |
综合类 | 27篇 |
航天 | 1438篇 |
出版年
2021年 | 66篇 |
2019年 | 52篇 |
2018年 | 149篇 |
2017年 | 108篇 |
2016年 | 91篇 |
2014年 | 166篇 |
2013年 | 228篇 |
2012年 | 212篇 |
2011年 | 318篇 |
2010年 | 217篇 |
2009年 | 338篇 |
2008年 | 421篇 |
2007年 | 236篇 |
2006年 | 185篇 |
2005年 | 233篇 |
2004年 | 237篇 |
2003年 | 272篇 |
2002年 | 172篇 |
2001年 | 260篇 |
2000年 | 163篇 |
1999年 | 187篇 |
1998年 | 222篇 |
1997年 | 168篇 |
1996年 | 188篇 |
1995年 | 248篇 |
1994年 | 260篇 |
1993年 | 135篇 |
1992年 | 187篇 |
1991年 | 76篇 |
1990年 | 82篇 |
1989年 | 170篇 |
1988年 | 69篇 |
1987年 | 63篇 |
1986年 | 88篇 |
1985年 | 245篇 |
1984年 | 208篇 |
1983年 | 163篇 |
1982年 | 179篇 |
1981年 | 260篇 |
1980年 | 69篇 |
1979年 | 55篇 |
1978年 | 66篇 |
1977年 | 54篇 |
1976年 | 45篇 |
1975年 | 54篇 |
1974年 | 56篇 |
1973年 | 47篇 |
1972年 | 58篇 |
1971年 | 41篇 |
1970年 | 47篇 |
排序方式: 共有8098条查询结果,搜索用时 0 毫秒
411.
As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research. 相似文献
412.
413.
G. J. Peters 《Space Science Reviews》1989,49(3-4):9-22
The circumstellar plasma that produces H emission in Algol binaries has been investigated using phase-resolved, high dispersion data acquired from CCD and image tube detectors. Results are summarized in this paper, including discussions of the disk geometry and size, asymmetry in the distribution of material, long-term or non-phase dependent variability, mass outflow, the mean electron density, and how the latter properties vary with the system's period or location in the r-q diagram. Five systems which display permanent emission with periods ranging from 4.5 to 261 days (SW Cyg, UX Mon, TT Hya, AD Her, and RZ Oph) are intercompared. If P < 4.5 days, no permanent disks are observed, while if P > 6 days, stable disks with only slight long-term variations in their H brightness are seen. The most variable systems appear to be those in the 5 – 6 day range, but the star's position in the r-q diagram has the largest influence on its behavior. The trailing side of the accretion disk, where the gas stream impacts the inner disk, is usually brighter, and the leading side is often times more extended. The disk extends out to at least 95% of the Roche surface of the primary and is highly flattened (RP). Mass outflow near phase 0.5 is commonplace. 相似文献
414.
A white light coronagraph was launched into orbit aboard the space shuttle OV 103 (Discovery) on 7 April 1993. This device was one of two instruments included in the SPARTAN 201-1 payload, a completely autonomous sub-satellite deployed from the shuttle for a period of about 47 hours. The WLC system is an externally occulted coronagraph system which incorporates a rotating half-wave plate polarimeter, and the image data is used to infer the brightness, the polarized brightness and the degree of polarization of the white light emission from the solar corona. These data are in turn used to infer estimates of the K- and F-coronal brightnesses and density distributions. We shall present preliminary results of the electron density estimate in the coronal streamer and hole region and describe the methods employed.affiliated to USRA 相似文献
415.
416.
L. Ofman M. Romoli G. Noci G. Poletto J. L. Kohl R. A. Howard C. St. Cyr C. E. Deforest 《Space Science Reviews》1999,87(1-2):287-290
In recent UVCS/SOHO White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness
(pB) in the polar coronal holes at heliocentric distances of 1.9 to 2.45 solar radii. The motivation for the observation is
the 2.5D MHD model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes.
In February 1998 we performed new observations using the UVCS/WLC in the coronal hole and obtained additional data. The new
data corroborate our earlier findings with higher statistical significance. The new longer observations show that the power
spectrum peaks in the 10–12 minute range. These timescales agree with EIT observations of brightness fluctuations in polar
plumes. We performed preliminary LASCO/C2 observations in an effort to further establish the coronal origin of the fluctuations.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
417.
Xinliang Li Zhi-Quan Luo Wong K.M. Bosse E. 《IEEE transactions on aerospace and electronic systems》1999,35(2):474-490
We present an efficient two-scan data association method (TSDA) based on an interior point linear programming (LP) approach. In this approach, the TSDA problem is first formulated as a 3-dimensional assignment problem, and then relaxed to a linear program; the latter is subsequently solved by the highly efficient homogeneous, self-dual interior point LP algorithm. When the LP algorithm generates a fractional optimal solution, we use a technique similar to the joint probabilistic data association method (JPDA) to compute a weighted average of the resulting fractional assignments, and use it to update the states of the existing tracks generated by Kalman filters. Unlike the traditional single scan JPDA method, our TSDA method provides an explicit mechanism for track initiation. Extensive computer simulations have demonstrated that the new TSDA method is not only far more efficient in terms of low computational complexity, but also considerably more accurate than the existing single-scan JPDA method 相似文献
418.
Peter C. Thomas Joseph Veverka Michael F. A’Hearn Lucy Mcfadden Michael J. S. Belton Jessica M. Sunshine 《Space Science Reviews》2005,117(1-2):193-205
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and
structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact
data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological
issues of cometary nuclei. 相似文献
419.
F. Bagenal A. Adriani F. Allegrini S. J. Bolton B. Bonfond E. J. Bunce J. E. P. Connerney S. W. H. Cowley R. W. Ebert G. R. Gladstone C. J. Hansen W. S. Kurth S. M. Levin B. H. Mauk D. J. McComas C. P. Paranicas D. Santos-Costa R. M. Thorne P. Valek J. H. Waite P. Zarka 《Space Science Reviews》2017,213(1-4):219-287
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets. 相似文献
420.
Mende S.B. Heetderks H. Frey H.U. Lampton M. Geller S.P. Abiad R. Siegmund O.H.W. Tremsin A.S. Spann J. Dougani H. Fuselier S.A. Magoncelli A.L. Bumala M.B. Murphree S. Trondsen T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response. 相似文献