首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8966篇
  免费   16篇
  国内免费   29篇
航空   4079篇
航天技术   3149篇
综合类   25篇
航天   1758篇
  2021年   86篇
  2019年   54篇
  2018年   186篇
  2017年   123篇
  2016年   126篇
  2015年   61篇
  2014年   208篇
  2013年   275篇
  2012年   257篇
  2011年   392篇
  2010年   288篇
  2009年   395篇
  2008年   449篇
  2007年   274篇
  2006年   194篇
  2005年   251篇
  2004年   237篇
  2003年   279篇
  2002年   189篇
  2001年   290篇
  2000年   160篇
  1999年   212篇
  1998年   241篇
  1997年   159篇
  1996年   212篇
  1995年   258篇
  1994年   263篇
  1993年   156篇
  1992年   182篇
  1991年   73篇
  1990年   76篇
  1989年   185篇
  1988年   80篇
  1987年   76篇
  1986年   89篇
  1985年   243篇
  1984年   218篇
  1983年   173篇
  1982年   166篇
  1981年   294篇
  1980年   77篇
  1979年   66篇
  1978年   70篇
  1977年   63篇
  1976年   53篇
  1975年   73篇
  1974年   60篇
  1973年   57篇
  1972年   68篇
  1970年   54篇
排序方式: 共有9011条查询结果,搜索用时 15 毫秒
411.
412.
Long-term changes in the E-layer critical frequency, foE, at three stations of the European region (Juliusruh, Slough and Rome) and also at Moscow and Wakkanai stations are analyzed by the method developed by the authors and described in detail in the previous papers. It is found that Juliusruh and Slough stations demonstrate a well-pronounced change in foE (a trend) during two previous decades. At the same time, the same features of the behavior of the aforementioned trend k(foE) are obtained. The trend is positive and negative in the morning and evening hours, respectively. Similar diurnal behavior of k(foE) is found also for Moscow station but with lower absolute values of the trends. A well-pronounced seasonal behavior of k(foE) is detected at Juliusruh and Slough: the trend is minimal and maximal in the summer period and at the end of fall—beginning of winter, respectively. The maximal amplitude in the morning hours reaches +0.04?MHz per year, whereas the minimal amplitude in evening hours is ?0.06?MHz per year. No systematic changes exceeding by the magnitude 0.01?MHz per year are found for Rome and Wakkanai stations. It is assumed that the observed trends are related to changes (trends) in the meridional wind bringing NO molecules from the auroral oval to lower latitudes.  相似文献   
413.
A “Real-Time” plasma hazard assessment process was developed to support International Space Station (ISS) Program real-time decision-making providing solar array constraint relief information for Extravehicular Activities (EVAs) planning and operations. This process incorporates real-time ionospheric conditions, ISS solar arrays’ orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real-time data that is presently provided by the Floating Potential Measurement Unit (FPMU) which measures the ISS floating potential (FP), along with ionospheric electron number density (Ne) and electron temperature (Te), in order to determine the present ISS environment. Once the present environment conditions are correlated with International Reference Ionosphere (IRI) values, IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real-time measurements from a large network of digisondes to produce foF2 and hmF2 global maps in 15?min cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement. IRTAM has been identified as the FPMU back-up system that will be used to support the ISS Program if the FPMU should fail.  相似文献   
414.
A new methodology for Total Ionizing Dose (TID) tests is proposed. It is based on the employment of an on-chip 90Sr/90Y beta source as alternative to standard methods such as 60Co gamma rays and electrons from LINAC. The use of a compact beta source for TID tests has several advantages. In particular, the irradiation of devices with more than one radiation source results in a better representation of the complex space radiation environment composed of several types, energies and dose-rates. In addition, the use of an easy handling beta source allows the irradiation of electronic devices without any damage to other auxiliary circuit. In this work, 90Sr/90Y beta source dosimetry and related radiation field characteristics are discussed in depth.In order to validate the proposed source for TID tests, a rather complex device such as the “SPC56EL70L5” microcontroller from ST-Microelectronics was exposed to 90Sr/90Y beta rays. The results of this test were compared to that of a previous test of another sample from the same lot with a standard gamma 60Co source. The electronic performances following the two irradiations have been found to be in excellent agreement, by demonstrating therefore the validity of the proposed beta source for TID tests.  相似文献   
415.
This study proposes a motion detection and object tracking technique for GEO debris in a sequence of images. A couple of techniques (called the “stacking method” and “line-identifying technique”) were recently proposed to address the same problem. Although these techniques are effective at detecting the debris position and motion in the image sequences, there are some issues concerned with computational load and assumed debris motion. This study derives a method to estimate motion vectors of objects in image sequence and finally detect the debris locations by using a computer vision technique called an optical flow algorithm. The new method detects these parameters in low computational time in a serial manner, which implies that it has an advantage to track not only linear but also nonlinear motion of GEO debris more easily than the previous methods. The feasibility of the proposed methods is validated using real and synthesized image sequences which contain some typical debris motions.  相似文献   
416.
Collisionless unmagnetized plasma consisting of a mixture of warm ion-fluid and isothermal-electron is considered, assuming that the ion flow velocity has a weak relativistic effect. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation for small – but finite-amplitude electrostatic ion-acoustic waves in this plasma. The semi-inverse method and Agrawal’s method lead to the Euler–Lagrange equation that leads to the time fractional KdV equation. The variational-iteration method given by He is used to solve the derived time fractional KdV equation. The calculations show that the fractional order may play the same rule of higher order dissipation in KdV equation to modulate the soliton wave amplitude in the plasma system. The results of the present investigation may be applicable to some plasma environments, such as space-plasmas, laser-plasma interaction, plasma sheet boundary layer of the earth’s magnetosphere, solar atmosphere and interplanetary space.  相似文献   
417.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   
418.
This paper outlines, and explores the uncertainties in, hypothesized connections between a series of processes that could explain two long-standing puzzles; those of (1) the observed winter storm vorticity responses to atmospheric energy inputs that change the ionosphere–earth current density, Jz, that appear to involve storm invigoration, and (2) changes in anti-cyclonic blocking and circulation that include the observed colder winters in Great Britain and western Europe at solar minima, and especially at extended solar minima. A working hypothesis for the mechanism responsible for (1) is that the flow of Jz through conductivity gradients, as in stratified cloud layers and fog, especially with sea-salt aerosol haze over the high latitude winter oceans, deposits electric changes on droplets and aerosol particles; most importantly on cloud condensation nuclei (CCN). These electric charges modulate scavenging of the particles in clouds and haze layers, increasing the concentration of small CCN and decreasing the concentration of large CCN. When further cloud formation occurs there is increased concentration of small droplets and decreased concentration of large ones, reducing coalescence and the production of rain. Thus updrafts carry more liquid water above the freezing level, and there the increased production of ice releases more latent heat and invigorates the updraft (the Rosenfeld mechanism), leading to increased vorticity. Here we explore the major uncertainties for the reality of the above chain of physical processes. A consequence of cumulative cyclonic vorticity increases is increases in downstream anti-cyclonic blocking. A further working hypothesis for (2) is that the invigoration may be large enough to contribute to the observed increases in blocking in winters at solar minima (high Jz) in the North Atlantic, that result in colder winters in the UK and northern Europe.  相似文献   
419.
We present a novel instrument concept to measure the energy and mass spectra of ions incident on the lunar surface, based on the E-parallel–B or Thomson-parabola device used extensively as a diagnostic in the plasma fusion community. The Apollo-era Suprathermal Ion Detector Experiment (SIDE) was the first instrument package to perform in-situ measurements of ions incident on the lunar surface. The ions can originate from a variety of sources, including the solar wind, the Earth’s magnetotail, and photoionization of the thin lunar atmosphere. The species and energy distribution of ions arriving at the lunar surface depend in a complicated and poorly-understood fashion on the phase of the lunar day, the position of the Moon with respect to the Earth, and on the local plasma environment.  相似文献   
420.
Models are required to accurately predict mass and energy balances in a bioregenerative life support system. A modified energy cascade model was used to predict outputs of a multi-crop (tomatoes, potatoes, lettuce and strawberries) Lunar greenhouse prototype. The model performance was evaluated against measured data obtained from several system closure experiments. The model predictions corresponded well to those obtained from experimental measurements for the overall system closure test period (five months), especially for biomass produced (0.7% underestimated), water consumption (0.3% overestimated) and condensate production (0.5% overestimated). However, the model was less accurate when the results were compared with data obtained from a shorter experimental time period, with 31%, 48% and 51% error for biomass uptake, water consumption, and condensate production, respectively, which were obtained under more complex crop production patterns (e.g. tall tomato plants covering part of the lettuce production zones). These results, together with a model sensitivity analysis highlighted the necessity of periodic characterization of the environmental parameters (e.g. light levels, air leakage) in the Lunar greenhouse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号