首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19369篇
  免费   50篇
  国内免费   134篇
航空   10294篇
航天技术   5751篇
综合类   253篇
航天   3255篇
  2021年   159篇
  2018年   278篇
  2017年   151篇
  2016年   178篇
  2014年   438篇
  2013年   521篇
  2012年   448篇
  2011年   668篇
  2010年   493篇
  2009年   843篇
  2008年   865篇
  2007年   457篇
  2006年   437篇
  2005年   442篇
  2004年   484篇
  2003年   567篇
  2002年   513篇
  2001年   635篇
  2000年   375篇
  1999年   474篇
  1998年   473篇
  1997年   347篇
  1996年   424篇
  1995年   491篇
  1994年   494篇
  1993年   365篇
  1992年   353篇
  1991年   252篇
  1990年   244篇
  1989年   431篇
  1988年   212篇
  1987年   244篇
  1986年   248篇
  1985年   648篇
  1984年   529篇
  1983年   420篇
  1982年   494篇
  1981年   625篇
  1980年   248篇
  1979年   190篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   193篇
  1974年   182篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The results of numerical calculation of the dependences of the electron density, the eigenfrequency and the dielectric plasma permeability on the geometric parameters and the altitude of body motion in the near and far wake behind a thin conical body with a spherical nose blunting have been presented. The electron density maximum has been shown to be located in the region of the neck of the near wake behind the body, which determines the type of this region (supercritical or subcritical). This in turn affects the propagation of radio waves through this plasma region. A comparative analysis was performed for two different bodies with the same ballistic coefficient values. No characteristic distinctions were revealed in the values of electron density or the plasma eigenfrequency in the near and far wake behind these bodies. However, it has been shown that there are differences in the values of the distance from the bottom cross section to the neck of the near wake behind these bodies.  相似文献   
992.
The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh–Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite’s spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite’s zero equilibrium position in the orbital coordinate system.  相似文献   
993.
994.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
995.
The RELEС scientific payload of the Vernov satellite launched on July 8, 2014 includes the DRGE spectrometer of gamma-rays and electrons. This instrument comprises a set of scintillator phoswich-detectors, including four identical X-ray and gamma-ray detector with an energy range of 10 kev to 3 MeV with a total area of ~500 cm2 directed to the atmosphere, as well as an electron spectrometer containing three mutually orthogonal detector units with a geometric factor of ~2 cm2 sr. The aim of a space experiment with the DRGE instrument is the study of fast phenomena, in particular Terrestrial gamma-ray flashes (TGF) and magnetospheric electron precipitation. In this regard, the instrument provides the transmission of both monitoring data with a time resolution of 1 s, and data in the event-by-event mode, with a recording of the time of detection of each gamma quantum or electron to an accuracy of ~15 μs. This makes it possible to not only conduct a detailed analysis of the variability in the gamma-ray range, but also compare the time profiles with the results of measurements with other RELEC instruments (the detector of optical and ultraviolet flares, radio-frequency and low-frequency analyzers of electromagnetic field parameters), as well as with the data of ground-based facility for thunderstorm activity. This paper presents the first catalog of Terrestrial gamma-ray flashes. The criterion for selecting flashes required in order to detect no less than 5 hard quanta in 1 ms by at least two independent detectors. The TGFs included in the catalog have a typical duration of ~400 μs, during which 10–40 gamma-ray quanta were detected. The time profiles, spectral parameters, and geographic position, as well as a result of a comparison with the output data of other Vernov instruments, are presented for each of candidates. The candidate for Terrestrial gamma-ray flashes detected in the near-polar region over Antarctica is discussed.  相似文献   
996.
Using numerical modeling, the influence of the NO concentration on the intensity of 557.7 nm emission in aurora caused by electron precipitation has been studied. It has been shown that the O2 + NO reaction, which reduces the contribution of the dissociative recombination of the O2 + ion into the formation of the 1S state of atomic oxygen, is the main channel of suppression of the intensity of the emission at 557.7 nm. A method of estimating the NO concentration in the aurora based on the data of photometric measurements of emissions at 391.4, 557.7, and 630.0 nm has been proposed. The method has been tested using the data of simultaneous rocket measurements of emissions at 391.4, 557.7, and 630.0 nm and the NO content in aurora. A good agreement of estimates of the NO concentrations performed by the method to the results of direct measurements has been obtained.  相似文献   
997.
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.  相似文献   
998.
This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME.  相似文献   
999.
The variations in the spatial structure and time in electron fluxes with E = 235–300 keV in the slot region (2 < L < 3) between the radiation belts in the period of November 1, 2014 through December 8, 2014 during weak and moderate geomagnetic disturbances (Kp < 4, Dst >–60 nT) are analyzed based on the data of the RELEC complex on board the Vernov satellite (the height and inclination of the orbit are from 640 to 830 km and 98.4°, respectively). Irregular increases in the fluxes of such electrons and formation of a local maximum at L ~ 2.2–3.0 were observed. It has been shown that the intensity of this maximum is inversely proportional to the L value and grows with an increase in the geomagnetic activity level. New features discovered for the first time in the dynamics of radiation belt electrons manifest in the variations in the local structure and dynamics of fluxes of subrelativistic electrons in the slot region.  相似文献   
1000.
In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere–corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号