全文获取类型
收费全文 | 5636篇 |
免费 | 9篇 |
国内免费 | 15篇 |
专业分类
航空 | 2608篇 |
航天技术 | 2139篇 |
综合类 | 15篇 |
航天 | 898篇 |
出版年
2021年 | 39篇 |
2018年 | 86篇 |
2017年 | 70篇 |
2016年 | 58篇 |
2015年 | 29篇 |
2014年 | 100篇 |
2013年 | 146篇 |
2012年 | 125篇 |
2011年 | 213篇 |
2010年 | 148篇 |
2009年 | 229篇 |
2008年 | 291篇 |
2007年 | 146篇 |
2006年 | 107篇 |
2005年 | 160篇 |
2004年 | 165篇 |
2003年 | 199篇 |
2002年 | 111篇 |
2001年 | 197篇 |
2000年 | 99篇 |
1999年 | 158篇 |
1998年 | 165篇 |
1997年 | 126篇 |
1996年 | 120篇 |
1995年 | 176篇 |
1994年 | 198篇 |
1993年 | 90篇 |
1992年 | 119篇 |
1991年 | 51篇 |
1990年 | 65篇 |
1989年 | 118篇 |
1988年 | 47篇 |
1987年 | 58篇 |
1986年 | 56篇 |
1985年 | 173篇 |
1984年 | 142篇 |
1983年 | 127篇 |
1982年 | 125篇 |
1981年 | 206篇 |
1980年 | 55篇 |
1979年 | 56篇 |
1978年 | 52篇 |
1977年 | 46篇 |
1976年 | 41篇 |
1975年 | 49篇 |
1974年 | 39篇 |
1973年 | 36篇 |
1972年 | 58篇 |
1970年 | 29篇 |
1969年 | 31篇 |
排序方式: 共有5660条查询结果,搜索用时 15 毫秒
361.
V. Anmireddy R. VasudevanD. Anand T.V. RaoB.V.N. Kapardhi D. TrivediR.K. Manchanda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Highly sophisticated balloon-borne scientific payloads have stringent requirement on the telemetry and command system. The development and fabrication of the on-board TT&C package for telemetry, tracking, command, safety and ranging for these experiments is done in-house at the National Balloon Facility (NBF) at Hyderabad. In the last few years, we have made major improvements both in the ground station and the on-board sub-systems, thereby improving the data quality, data handling speed and the general flight control along with aviation safety. The new system has telemetry data rate up to 1 Mbps. A reduction in weight, power and cost of the reengineered on-board integrated package has also lead to the ease of operation during field tests prior to launch and at remote recovery sites. In this paper, we describe the details of the new control package, its flight performance and our plans for portable S-band telemetry and telecommand system to cater to the balloon flights from Antarctic station and long duration balloon flights. 相似文献
362.
Z. Peeters D. Vos I.L. ten Kate F. Selch C.A. van Sluis D.Yu. Sorokin G. Muijzer H. Stan-Lotter M.C.M. van Loosdrecht P. Ehrenfreund 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, −20, and −80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species. 相似文献
363.
Jean-Jacques Valette Frank G. Lemoine Pascale Ferrage Philippe Yaya Zuheir Altamimi Pascal Willis Laurent Soudarin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
For the first time, the International DORIS Service (IDS) has produced a technique level combination based on the contributions of seven analysis centers (ACs), including the European Space Operations Center (ESOC), Geodetic Observatory Pecny (GOP), Geoscience Australia (GAU), the NASA Goddard Space Flight Center (GSFC), the Institut Géographique National (IGN), the Institute of Astronomy, Russian Academy of Sciences (INASAN, named as INA), and CNES/CLS (named as LCA). The ACs used five different software packages to process the DORIS data from 1992 to 2008, including NAPEOS (ESA), Bernese (GOP), GEODYN (GAU, GSC), GIPSY/OASIS (INA), and GINS (LCA). The data from seven DORIS satellites, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5, Envisat and Jason-1 were processed and all the analysis centers produced weekly SINEX files in either variance–covariance or normal equation format. The processing by the analysis centers used the latest GRACE-derived gravity models, forward modelling of atmospheric gravity, updates to the radiation pressure modelling to improve the DORIS geocenter solutions, denser parameterization of empirically determined drag coefficients to improve station and EOP solutions, especially near the solar maximum in 2001–2002, updated troposphere mapping functions, and an ITRF2005-derived station set for orbit determination, DPOD2005. The CATREF software was used to process the weekly AC solutions, and produce three iterations of an IDS global weekly combination. Between the development of the initial solution IDS-1, and the final solution, IDS-3, the ACs improved their analysis strategies and submitted updated solutions to eliminate troposphere-derived biases in the solution scale, to reduce drag-related degradations in station positioning, and to refine the estimation strategy to improve the combination geocenter solution. An analysis of the frequency content of the individual AC geocenter and scale solutions was used as the basis to define the scale and geocenter of the IDS-3 combination. The final IDS-3 combination has an internal position consistency (WRMS) that is 15 to 20 mm before 2002 and 8 to 10 mm after 2002, when 4 or 5 satellites contribute to the weekly solutions. The final IDS-3 combination includes solutions for 130 DORIS stations on 67 different sites of which 35 have occupations over 16 years (1993.0–2009.0). The EOPs from the IDS-3 combination were compared with the IERS 05 C04 time series and the RMS agreement was 0.24 mas and 0.35 mas for the X and Y components of polar motion. The comparison to ITRF2005 in station position shows an agreement of 6 to 8 mm RMS in horizontal and 10.3 mm in height. The RMS comparison to ITRF2005 in station velocity is at 1.8 mm/year on the East component, to 1.2 mm/year in North component and 1.6 mm/year in height. 相似文献
364.
M. M. Freund T. Hirao T. Matsumoto S. Sato T. Watabe G. K. Brubaker L. Duband B. Grossman N. Larkin S. Lumetta A. E. Lange 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1993,13(12):505-508
We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 μm with spectral resolution λ/Δλ ≈ 3 and spatial resolution ΔΘ = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle 3He refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the ≈3 week mission lifetime with a sensitivity of <10−13 W·cm−2·sr−1 per 0.5 degree pixel. 相似文献
365.
T. Hopf S. KumarW.J. Karl W.T. Pike 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
It is often necessary for space-borne instrumentation to cope with substantial levels of shock acceleration both in the initial launch phase, as well as during entry, descent and landing in the case of planetary exploration. Current plans for a new generation of penetrator-based space missions will subject the associated on-board instrumentation to far greater levels of shock, and ways must therefore be found to either ruggedize or else protect any sensitive components during the impact phase. In this paper, we present an innovative method of shock protection that is suited for use in a number of planetary environments, based upon the temporary encapsulation of said components within a waxy solid which may then be sublimated to return the instrument back to its normal operation. We have tested this method experimentally using micromachined silicon suspensions under applied shock loads of up to 15,000g, and found that these were able to survive without incurring damage. Furthermore, quality factor measurements undertaken on these suspensions indicate that their mechanical performance remains unaffected by the encapsulation and subsequent sublimation process. 相似文献
366.
T. Aramaki S.E. Boggs W.W. Craig H. Fuke F. Gahbauer C.J. Hailey J.E. Koglin N. Madden K. Mori R.A. Ong T. Yoshida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The General AntiParticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antideuterons. GAPS complements existing and planned direct dark matter searches as well as other indirect techniques, probing a different and unique region of parameter space in a variety of proposed dark matter models. The GAPS method involves capturing antiparticles into a target material with the subsequent formation of an excited exotic atom. The exotic atom decays with the emission of atomic X-rays and pions from the nuclear annihilation, which uniquely identifies the captured antiparticle. This technique has been verified through the accelerator testing at KEK in 2004 and 2005. The prototype flight is scheduled from Hokkaido, Japan in 2011, preparatory for a long duration balloon flight from the Antarctic in 2014. 相似文献
367.
S.P. Kuzin S.K. Tatevian S.G. Valeev V.A. Fashutdinova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
An accuracy of geocenter motion estimation is strongly dependent on the geodetic network size and stations distribution over the Earth’s surface. From this point of view DORIS system has an advantage, as its ground network of beacons consists of more than 50 sites, equally distributed over the Earth’s surface. Aiming to study variations of the geocenter movements, the results of DORIS data analysis for the time span 1993.0–2009.0 (inawd06.snx series), performed at the Analysis Centre of the Institute of astronomy of the Russian Academy of Sciences, have been used. DORIS data processing was made with GIPSY/OASIS II software, developed by Jet Propulsion Laboratory and modified for DORIS data processing by Institute Géographique National. Standard deviations of stations coordinates are estimated at the level 0.5–4.0 cm (internal consistency), depending on the number of satellites used in the solution. RMS of estimated components of the DORIS satellites orbits, compared with the solutions of other IDS analysis centres, do not exceed 1–2 cm. Weekly solutions for coordinates have been transformed from free network solutions (inawd06.snx series) to a well defined terrestrial reference frame ITRF2005 with the use of seven parameters of Helmert transformation, which were examined with a view to study variations of the geocenter movements (ina05wd01.geoc time series). In order to estimate linear trend, amplitudes, periods and phases of geocenter variation a method of linear regression was applied. The evaluated amplitudes of annual variations are of the order of 5–7 mm for X and Y components and 27–29 mm for Z component. Semi-annual amplitudes are also noticeable in all components (1–34 mm for X, Y and Z components). Secular trends in the DORIS geocenter coordinates are: −1.2, −0.1 and −0.3 mm/year for X, Y and Z directions respectively. 相似文献
368.
R. Govind F.G. Lemoine J.J. Valette D. Chinn N. Zelensky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Geoscience Australia contributed a multi-satellite, multi-year weekly time series to the International DORIS Service combined submission for the construction of International Terrestrial Reference Frame 2008 (ITRF2008). This contributing solution was extended to a study of the capability of DORIS to dynamically estimate the variation in the geocentre location. Two solutions, comprising different constraint configurations of the tracking network, were undertaken. The respective DORIS satellite orbit solutions (SPOT-2, SPOT-4, SPOT-5 and Envisat) were verified and validated by comparison with those produced at the Goddard Space Flight Center (GSFC), DORIS Analysis Centre, for computational consistency and standards. In addition, in the case of Envisat, the trajectories from the GA determined SLR and DORIS orbits were compared. The results for weekly dynamic geocentre estimates from the two constraint configurations were benchmarked against the geometric geocentre estimates from the IDS-2 combined solution. This established that DORIS is capable of determining the dynamic geocentre variation by estimating the degree one spherical harmonic coefficients of the Earth’s gravity potential. It was established that constrained configurations produced similar results for the geocentre location and consequently similar annual amplitudes. For the minimally constrained configuration Greenbelt–Kitab, the mean of the uncertainties of the geocentre location were 2.3, 2.3 and 7.6 mm and RMS of the mean uncertainties were 1.9, 1.2 and 3.5 mm for the X, Y and Z components, respectively. For GA_IDS-2_Datum constrained configuration, the mean of the uncertainties of the geocentre location were 1.7, 1.7 and 6.2 mm and RMS of the mean uncertainties were 0.9, 0.7 and 2.9 mm for the X, Y and Z components, respectively. The mean of the differences of the two DORIS dynamic geocentre solutions with respect to the IDS-2 combination were 1.6, 4.0 and 5.1 mm with an RMS of the mean 21.2, 14.0 and 31.5 mm for the Greenbelt–Kitab configuration and 4.1, 3.9 and 4.3 mm with an RMS 8.1, 9.0 and 28.6 mm for the GA_IDS-2_Datum constraint configuration. The annual amplitudes for each component were estimated to be 5.3, 10.8 and 11.0 mm for the Greenbelt–Kitab configuration and 5.3, 9.3 and 9.4 mm for the GA_IDS-2_Datum constraint configuration. The two DORIS determined dynamic geocentre solutions were compared to the SLR determined dynamic solution (which was determined from the same process of the GA contribution to the ITRF2008 ILRS combination) gave mean differences of 3.3, −4.7 and 2.5 mm with an RMS of 20.7, 17.5 and 28.0 mm for the X, Y and Z components, respectively for the Greenbelt–Kitab configuration and 1.1, −5.4 and 4.4 mm with an RMS of 9.7, 13.3 and 24.9 mm for the GA_IDS-2_Datum configuration. The larger variability is reflected in the respective amplitudes. As a comparison, the annual amplitudes of the SLR determined dynamic geocentre are 0.9, 1.0 and 6.8 mm in the X, Y and Z components. The results from this study indicate that there is potential to achieve precise dynamically determined geocentre from DORIS. 相似文献
369.
High resolution radar clutter statistics 总被引:6,自引:0,他引:6
Anastassopoulos Lampropoulos G.A. Drosopoulos A. Rey N. 《IEEE transactions on aerospace and electronic systems》1999,35(1):43-60
The generalized compound probability density function (GC-pdf) is presented for modeling high resolution radar clutter. In particular, the model is used to describe deviation of the speckle component from the Rayleigh to Weibull or other pdfs with longer tails. The GC-pdf is formed using the generalized gamma (GΓ) pdf to describe both the speckle and the modulation component of the radar clutter. The proposed model is analyzed and thermal noise is incorporated into it. The validation of the GC-pdf with real data is carried out employing the statistical moments as well as goodness-of-fit tests. A large variety of experimental data is used for this purpose. The GC-pdf outperforms the K-pdf in modeling high resolution radar clutter and reveals its structural characteristics 相似文献
370.
A regulated peak-power tracking (RPPT) system for space power application is proposed. Large-signal stability analysis is provided to understand the main four different modes of operations of the system, as well as the mode transitions. A simple and effective control scheme for the system is also proposed. Small-signal analysis is performed thereafter to provide design optimization, and the predictions are verified by computer simulations 相似文献