首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6492篇
  免费   11篇
  国内免费   19篇
航空   3147篇
航天技术   2051篇
综合类   19篇
航天   1305篇
  2021年   48篇
  2019年   34篇
  2018年   221篇
  2017年   171篇
  2016年   105篇
  2015年   52篇
  2014年   112篇
  2013年   182篇
  2012年   171篇
  2011年   308篇
  2010年   254篇
  2009年   332篇
  2008年   358篇
  2007年   249篇
  2006年   131篇
  2005年   195篇
  2004年   174篇
  2003年   185篇
  2002年   106篇
  2001年   197篇
  2000年   94篇
  1999年   127篇
  1998年   156篇
  1997年   129篇
  1996年   125篇
  1995年   174篇
  1994年   188篇
  1993年   98篇
  1992年   111篇
  1991年   46篇
  1990年   59篇
  1989年   110篇
  1988年   57篇
  1987年   41篇
  1986年   63篇
  1985年   174篇
  1984年   163篇
  1983年   124篇
  1982年   125篇
  1981年   195篇
  1980年   46篇
  1979年   39篇
  1978年   59篇
  1977年   41篇
  1976年   33篇
  1975年   55篇
  1974年   40篇
  1973年   44篇
  1972年   54篇
  1971年   30篇
排序方式: 共有6522条查询结果,搜索用时 15 毫秒
131.
We present a preliminary version of a potential tool for real time proton flux prediction which provides proton flux profiles and cumulative fluence profiles at 0.5 and 2 MeV of solar energetic particle events, from their onset up to the arrival of the interplanetary shock at the spacecraft position (located at 1 or 0.4 AU). Based on the proton transportation model by Lario et al. [Lario, D., Sanahuja, B., Heras, A.M. Energetic particle events: efficiency of interplanetary shocks as 50 keV E < 100 MeV proton accelerators. Astrophys. J. 509, 415–434, 1998] and the magnetohydrodynamic shock propagation model of Wu et al. [Wu, S.T., Dryer, M., Han, S.M. Non-planar MHD model for solar flare-generated disturbances in the Heliospheric equatorial plane. Sol. Phys. 84, 395–418, 1983], we have generated a database containing “synthetic” profiles of the proton fluxes and cumulative fluences of 384 solar energetic particle events. We are currently validating the applicability of this code for space weather forecasting by comparing the resulting “synthetic” flux profiles with those of several real events.  相似文献   
132.
Two-dimensional compressible magnetohydrodynamic simulations of current sheet dynamics under the influence of multiple anomalous resistivity areas and slight asymmetries are presented. Following induced tearing and multiple coalescence, a plasmoid is formed and accelerated. Dominant X-points drive the dynamical evolution and lead to transient occurrence of a Petschek-like reconnection geometry. The dependence of current density extrema, plasmoid bulk velocity and maximum reconnection rate on the Lundquist number is examined.  相似文献   
133.
Vacuum exposure renders the survival of spores of Bacillus subtilis approximately five times more sensitive to ultraviolet light irradiation than exposure under atmospheric conditions. The photoproduct formation in spores irradiated under ultrahigh vacuum (UHV) conditions is compared to the photoproduct formation in spores irradiated at atmospheric pressure. Compared to irradiation at atmospheric pressure, where only the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine (TDHT) can be detected, two additional photoproducts, known as the c,s and t,s isomers of thymine dimer (T<>T) are produced in vacuo. The spectral efficiencies for photoproduct formation in spores under atmospheric and vacuum conditions are compared. Since there is no increased formation of TDHT after irradiation in vacuum, TDHT cannot be made responsible for the observed vacuum effect. "Vacuum specific" photoproducts may cause a synergistic response of spores to the simultaneous action of ultraviolet light (UV) and UHV. Three different mechanisms are discussed for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuum. The experiments described contribute valuable research information on the chance for survival of microorganisms in outer space.  相似文献   
134.
135.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
136.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   
137.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
138.
Simple solutions for hyperbolic and related position fixes   总被引:4,自引:0,他引:4  
Navigation fixed from range differences to three stations and an additional piece of information are investigated. It is shown that if the additional information is the navigator altitude, or the range difference to a fourth station, the computation of the navigation fix is reduced to finding the roots of a quadratic. If the additional information is the range to another station, or that the navigator is on the Earth ellipsoid, the fix can be obtained by solving a quartic. By emphasizing the underlying geometric interpretations, these fixes and their simple solutions are made clear. The derivations also show that the same solution algorithms are applicable if the basic navigation measurements are range sums instead of range differences  相似文献   
139.
Conventional radiation risk assessments are presently based on the additivity assumption. This assumption states that risks from individual components of a complex radiation field involving many different types of radiation can be added to yield the total risk of the complex radiation field. If the assumption is not correct, the summations and integrations performed to obtain the presently quoted risk estimates are not appropriate. This problem is particularly important in the area of space radiation risk evaluation because of the many different types of high- and low-LET radiation present in the galactic cosmic ray environment. For both low- and high-LET radiations at low enough dose rates, the present convention is that the addivity assumption holds. Mathematically, the total risk, Rtot is assumed to be Rtot = summation (i) Ri where the summation runs over the different types of radiation present. If the total dose (or fluence) from each component is such that the interaction between biological lesions caused by separate single track traversals is negligible within a given cell, it is presently considered to be reasonable to accept the additivity assumption. However, when the exposure is protracted over many cell doubling times (as will be the case for extended missions to the moon or Mars), the possibility exists that radiation effects that depend on multiple cellular events over a long time period, such as is probably the case in radiation-induced carcinogenesis, may not be additive in the above sense and the exposure interval may have to be included in the evaluation procedure. It is shown, however, that "inverse" dose-rate effects are not expected from intermediate LET radiations arising from the galactic cosmic ray environment due to the "sensitive-window-in-the-cell-cycle" hypothesis.  相似文献   
140.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号