首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6126篇
  免费   9篇
  国内免费   13篇
航空   2594篇
航天技术   2124篇
综合类   26篇
航天   1404篇
  2021年   55篇
  2019年   32篇
  2018年   149篇
  2017年   124篇
  2016年   130篇
  2015年   55篇
  2014年   153篇
  2013年   203篇
  2012年   182篇
  2011年   257篇
  2010年   204篇
  2009年   296篇
  2008年   324篇
  2007年   201篇
  2006年   134篇
  2005年   178篇
  2004年   184篇
  2003年   199篇
  2002年   145篇
  2001年   204篇
  2000年   86篇
  1999年   126篇
  1998年   151篇
  1997年   104篇
  1996年   102篇
  1995年   178篇
  1994年   169篇
  1993年   86篇
  1992年   106篇
  1991年   40篇
  1990年   58篇
  1989年   100篇
  1988年   39篇
  1987年   39篇
  1986年   51篇
  1985年   177篇
  1984年   149篇
  1983年   124篇
  1982年   108篇
  1981年   208篇
  1980年   49篇
  1979年   45篇
  1978年   45篇
  1977年   41篇
  1976年   40篇
  1975年   44篇
  1974年   36篇
  1973年   34篇
  1972年   50篇
  1971年   27篇
排序方式: 共有6148条查询结果,搜索用时 656 毫秒
501.
The finite-difference method acceptable for on-board computers is applied to analyze the thermo-stressed state for the thermal-barrier coating of a perforated turbine blade and its wall at transient and stationary conditions of air-breathing jet engine operation during a flight.  相似文献   
502.
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters.  相似文献   
503.
The paper presents the results of calculating nonstatitionary heat exchange between a heattransfer agent (water) and a gadolinium working element of the thermomagnetic engine with the use of ANSYS 13.0 certified software. Recommendations for designing the thermomagnetic engine working elements are given based on the analysis of calculation results.  相似文献   
504.
A computational viewpoint on the problems of design and numerical simulation for the nozzles of modern aircraft turbofan engines is presented. Modern concepts of noise-suppressing nozzles for civil aircraft are reviewed. Examples of application of CFD (computational fluid dynamics) methods to the analysis of nozzle flow structure and assessment of nozzle thrust characteristics are given. Errors of turbulence models in simulation of jets are analyzed. The authors’ experience in simulation of noise-suppressing nozzles for supersonic civil aircrafts is demonstrated. Insufficient accuracy of acoustic analogies for this class of tasks is shown, but a possible area of acoustic analogies application is noted. The essential elements of computational aeroacoustics (CAA) approach and numerical methods characteristic of CAA are reviewed. Numerical methodology for the simulation of nozzle acoustic performance is described in detail, including methods for simulation of near and far field of a nozzle, for generation of input perturbations and for the processing the far-field noise. Results of verification and methodical analysis of this acoustic methodology are presented.  相似文献   
505.
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.  相似文献   
506.
In this paper, we formulated the criteria for evaluating the effectiveness of mixing chambers, needed in obtaining polymeric materials with reproducible properties. The results of comparative analysis of organizing the methods for mixing two multiphase flows of oppositely charged particles are presented. This analysis, carried out using CFD programs, shows that the mixing chamber construction in which the flows being mixed are directed at an angle to each other, and additional gas flow inlets are provided in the lateral wall, is the most efficient.  相似文献   
507.
508.
The ultimate goal of a comprehensive life detection strategy is never to miss life when we encounter it. To accomplish this goal, we must define life in universal, that is, non-Earthcentric, measurable terms. Next, we must understand the nature of biosignatures observed from the measured parameters of life. And finally, we must have a clear idea of the end-member states for the search--what does life, past life, or no life look like (in terms of the measured parameters) at multiple spatial and temporal scales? If we can approach these problems both in the laboratory and in the field on Earth, then we have a chance of being able to detect life elsewhere in our solar system. What are the required limits of detection at each of those scales? What spatial, spectral, and temporal resolutions are necessary to detect life? These questions are actively being investigated in our group, and in this report, we present our strategy and approach to non-Earthcentric life detection.  相似文献   
509.
In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m2 PAR and the temperature of 24 degrees C. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effects of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature, and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically.  相似文献   
510.
Eichler D  Beskin G 《Astrobiology》2001,1(4):489-493
We propose using large Air Cerenkov telescopes (ACTs) to search for optical, pulsed signals from extraterrestrial intelligence. Such dishes collect tens of photons from a nanosecond-scale pulse of isotropic equivalent power of tens of solar luminosities at a distance of 100 pc. The field of view for giant ACTs can be on the order of 10 square degrees, and they will be able to monitor 10-100 stars simultaneously for nanosecond pulses of about 6th magnitude or brighter. Using the Earth's diameter as a baseline, orbital motion of the planet could be detected by timing the pulse arrivals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号