首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6130篇
  免费   13篇
  国内免费   14篇
航空   2595篇
航天技术   2132篇
综合类   26篇
航天   1404篇
  2021年   55篇
  2019年   32篇
  2018年   150篇
  2017年   124篇
  2016年   131篇
  2015年   55篇
  2014年   153篇
  2013年   204篇
  2012年   182篇
  2011年   257篇
  2010年   204篇
  2009年   296篇
  2008年   324篇
  2007年   201篇
  2006年   134篇
  2005年   178篇
  2004年   184篇
  2003年   199篇
  2002年   145篇
  2001年   204篇
  2000年   86篇
  1999年   126篇
  1998年   151篇
  1997年   104篇
  1996年   102篇
  1995年   178篇
  1994年   169篇
  1993年   86篇
  1992年   106篇
  1991年   40篇
  1990年   58篇
  1989年   100篇
  1988年   40篇
  1987年   40篇
  1986年   51篇
  1985年   177篇
  1984年   150篇
  1983年   125篇
  1982年   108篇
  1981年   208篇
  1980年   49篇
  1979年   45篇
  1978年   45篇
  1977年   41篇
  1976年   40篇
  1975年   44篇
  1974年   36篇
  1973年   34篇
  1972年   50篇
  1971年   27篇
排序方式: 共有6157条查询结果,搜索用时 0 毫秒
11.
12.
This paper reviews the medical operations performed on six European astronauts during seven space missions on board the space station Mir. These missions took place between November 1988 and August 1999, and their duration ranged from 14 days to 189 days. Steps of pre-flight medical selection and flight certification are presented. Countermeasures program used during the flight, as well as rehabilitation program following short and long-duration missions are described. Also reviewed are medical problems encountered during the flight, post-flight physiological changes such as orthostatic intolerance, exercise capacity, blood composition, muscle atrophy, bone density, and radiation exposure.  相似文献   
13.
We have studied the effects of prolonged (up to 175 days) exposure of Lactuca sativa seeds to space flight factors, including primary cosmic radiation heavy ions. The data obtained evidence a significant fourfold increase ofs pontaneous mutagenesis in seeds both with regard to the total number of aberrant cells as well as the formation of single cells with multiple aberrations. Comparison of the present experiment with earlier works shows that the frequency of such aberrations increases with the duration of the flight.  相似文献   
14.
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.  相似文献   
15.
Mechanisms for the deposition of heat in the lower coronal plasma are discussed, emphasizing recent attempts to reconcile the fluid and kinetic perspectives. Structures at the MHD scales are believed to act as reservoirs for fluctuation energy, which in turn drive a nonlinear cascade process. Kinetic processes act at smaller spatial scales and more rapid time scales. Cascade-driven processes are contrasted with direct cyclotron absorption, and this distinction is echoed in the contrast between frequency and wavenumber spectra of the fluctuations. Observational constraints are also discussed, along with estimates of the relative efficiency of cascade and cyclotron processes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
16.
The results of studying the interaction of two types of the solar wind (magnetic clouds and solar wind of extremely low density) with the Earth's magnetosphere are discussed. This study is based of the INTERBALL space project measurements and on the other ground-based and space observations. For moderate variations of the solar wind and interplanetary magnetic field (IMF) parameters, the response of the magnetosphere is similar to its response to similar changes in the absence of magnetic clouds and depends on a previous history of IMF variations. Extremely large density variations on the interplanetary shocks, and on leading and trailing edges of the clouds result in a strong deformation of the magnetosphere, in large-scale motion of the geomagnetic tail, and in the development of magnetic substorms and storms. The important consequences of these processes are: (1) the observation of regions of the magnetosphere and its boundaries at great distances from the average location; (2) density and temperature variations in the outer regions of the magnetosphere; (3) multiple crossings of geomagnetic tail boundaries by a satellite; and (4) bursty fluxes of electrons and ions in the magnetotail, auroral region, and the polar cap. Several polar activations and substorms can develop during a single magnetic cloud arrival; a greater number of these events are accompanied, as a rule, by the development of a stronger magnetic storm. A gradual, but very strong, decrease of the solar wind density on May 10–12, 1999, did not cause noticeable change of geomagnetic indices, though it resulted in considerable expansion of the magnetosphere.  相似文献   
17.
We study the motion of a symmetrical satellite with a pair of flexible viscoelastic rods in a central Newtonian gravitational field. A restricted problem formulation is considered, when the satellite's center of mass moves along a fixed circular orbit. A small parameter is introduced which is inversely proportional to the stiffness of flexible elements. Another small parameter is equal to the ratio of the squared orbital angular velocity and the squared magnitude of the initial angular velocity of the satellite. In order to describe the satellite rotational motion relative to the center of mass, we use the canonical Andoyer variables. In the undisturbed formulation of the problem, i.e., at = 0 and = 0, these variables are the action–angle variables. Equations describing the evolution of motion are derived by an asymptotic method which combines the method of separating motions for systems with an infinite number of degrees of freedom and the Krylov–Bogolyubov method for systems with fast and slow variables. The manifolds of stationary motions are found, and their stability is investigated on the basis of equations in variations. Phase portraits are constructed which describe the rotational motion of a satellite at the stage of slow dissipative evolution.  相似文献   
18.
The Lambert–Amery System is the largest glacier–ice shelf system in East Antarctica, draining a significant portion of the ice sheet. Variation in ice sheet discharge from Antarctica or Greenland has an impact on the rate of change in global mean sea level; which is a manifestation of climate change. In conjunction with a measure of ice thickness change, ice sheet discharge can be monitored by determining the absolute velocities of these glaciers.  相似文献   
19.
20.
Introduction     
Space Science Reviews -  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号