首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6398篇
  免费   25篇
  国内免费   16篇
航空   3062篇
航天技术   2248篇
综合类   20篇
航天   1109篇
  2021年   50篇
  2019年   41篇
  2018年   101篇
  2017年   79篇
  2016年   76篇
  2015年   38篇
  2014年   118篇
  2013年   158篇
  2012年   156篇
  2011年   236篇
  2010年   167篇
  2009年   245篇
  2008年   320篇
  2007年   171篇
  2006年   138篇
  2005年   184篇
  2004年   177篇
  2003年   202篇
  2002年   131篇
  2001年   215篇
  2000年   114篇
  1999年   147篇
  1998年   182篇
  1997年   125篇
  1996年   145篇
  1995年   203篇
  1994年   201篇
  1993年   114篇
  1992年   145篇
  1991年   61篇
  1990年   68篇
  1989年   140篇
  1988年   66篇
  1987年   58篇
  1986年   66篇
  1985年   200篇
  1984年   183篇
  1983年   162篇
  1982年   141篇
  1981年   211篇
  1980年   56篇
  1979年   55篇
  1978年   58篇
  1977年   56篇
  1976年   47篇
  1975年   63篇
  1974年   50篇
  1973年   45篇
  1972年   68篇
  1971年   39篇
排序方式: 共有6439条查询结果,搜索用时 15 毫秒
261.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
262.
The reflection of oblique shock waves has been the subject of numerous experimental, analytical and numerical studies in the past five decades. In the past six years three reviews have been published on various aspects of shock wave phenomena by Griffith (1981), Bazhenova et al. (1984) and Hornung (1985). However, these reviews were not devoted completely to shock wave reflection phenomena and as such they are more limited in scope than the present review. Furthermore, the developments since these reviews were written suggested a need for an up-to-date comprehensive review. The present review is aimed at describing in detail the entire shock wave reflection phenomenon from a phenomenological point of view. It is divided into three parts. The first is dedicated to the reflection in pseudo-steady flows, e.g., shock tube experiments over straight wedges, the second concentrates on steady flows, e.g., wind tunnel experiments, and the third describes the phenomenon in truly unsteady flows, e.g., shock tube experiment over non-straight wedges, spherical blast wave reflections, etc. In each of these flow patterns, unsolved problems are discussed and future research needs are identified. In order to keep this review within an acceptable size it was decided not to include details of numerical studies. Whenever possible the nomenclature is the one suggested by Ben-Dor and Dewey (1985).  相似文献   
263.
With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of `telepresence' that may be useful for prolonged tasks. Using top-down 3-D model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview model to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and, in this university environment, to basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics. Speculation as to future industrial drives for this telerobotic field suggests efficient roles for government agencies such as NASA  相似文献   
264.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
265.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
266.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
267.
The mitigation of FM interference in GPS receivers is considered. In difference to commonly assumed wideband and narrowband interferers, the FM interferers are wideband, but instantaneously narrowband, and as such, have clear time-frequency (TF) signatures that are distinct from the GPS coarse acquisition (C/A) spread spectrum code. In the proposed technique, the estimate of the FM interference instantaneous frequency (IF) and the interference spatial signature are used to construct the spatiotemporal interference subspace. The IF estimates can be provided using existing effective linear or bilinear TF methods. The undesired signal arrival is suppressed by projecting the input data on the interference orthogonal subspace. With a multisensor receiver, the distinctions in both the spatial and TF signatures of signal arrivals allow effective interference suppressions. The deterministic nature of the signal model is considered and the known underlying structure of the GPS C/A code is utilized. We derive the receiver signal-to-interference-plus-noise ratio (SINR) under exact and perturbed IF values. The effect of IF estimation errors on both pseudorange measurements and navigation data recovery is analyzed. Simulation results comparing the receiver performances under IF errors in single and multiantenna GPS receivers are provided.  相似文献   
268.
Several design and testing aspects of the TRIO smart sensor data acquisition chip, developed by JHU/APL for NASA spacecraft applications are presented. TRIO includes a 10 bit self-corrected analog-to-digital converter (ADC), 16/32 analog inputs, a front end multiplexer with selectable aquisition time, a current source, memory, serial and parallel bus, and control logic. So far TRIO is used in many missions including Contour, Messenger, Stereo, Pluto, and the generic JPL X2000 spacecraft bus.  相似文献   
269.
Polar format algorithm for bistatic SAR   总被引:4,自引:0,他引:4  
Matched filtering (MF) of phase history data is a mathematically ideal but computationally expensive approach to bistatic synthetic aperture radar (SAR) image formation. Fast backprojection algorithms (BPAs) for image formation have recently been shown to give improved O(N/sup 2/ log/sub 2/N) performance. An O(N/sup 2/ log/sub 2/N) bistatic polar format algorithm (PFA) based on a bistatic far-field assumption is derived. This algorithm is a generalization of the popular PFA for monostatic SAR image formation and is highly amenable to implementation with existing monostatic image formation processors. Limits on the size of an imaged scene, analogous to those in monostatic systems, are derived for the bistatic PFA.  相似文献   
270.
A command and control (C/sup 2/) problem for military air operations is addressed. Specifically, we consider C/sup 2/ problems for air vehicles against ground-based targets and defensive systems. The problem is viewed as a stochastic game. We restrict our attention to the C/sup 2/ level where the problem may consist of a few unmanned combat air vehicles (UCAVs) or aircraft (or possibly teams of vehicles), less than say, a half-dozen enemy surface-to-air missile air defense units (SAMs), a few enemy assets (viewed as targets from our standpoint), and some enemy decoys (assumed to mimic SAM radar signatures). At this low level, some targets are mapped out and possible SAM sites that are unavoidably part of the situation are known. One may then employ a discrete stochastic game problem formulation to determine which of these SAMs should optimally be engaged (if any), and by what series of air vehicle operations. We provide analysis, numerical implementation, and simulation for full state-feedback and measurement feedback control within this C/sup 2/ context. Sensitivity to parameter uncertainty is discussed. Some insight into the structure of optimal and near-optimal strategies for C/sup 2/ is obtained. The analysis is extended to the case of observations which may be affected by adversarial inputs. A heuristic based on risk-sensitive control is applied, and it is found that this produces improved results over more standard approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号