全文获取类型
收费全文 | 7298篇 |
免费 | 16篇 |
国内免费 | 16篇 |
专业分类
航空 | 3434篇 |
航天技术 | 2586篇 |
综合类 | 23篇 |
航天 | 1287篇 |
出版年
2021年 | 57篇 |
2018年 | 184篇 |
2017年 | 125篇 |
2016年 | 96篇 |
2015年 | 51篇 |
2014年 | 173篇 |
2013年 | 203篇 |
2012年 | 198篇 |
2011年 | 293篇 |
2010年 | 202篇 |
2009年 | 316篇 |
2008年 | 404篇 |
2007年 | 205篇 |
2006年 | 167篇 |
2005年 | 221篇 |
2004年 | 200篇 |
2003年 | 240篇 |
2002年 | 141篇 |
2001年 | 245篇 |
2000年 | 114篇 |
1999年 | 159篇 |
1998年 | 191篇 |
1997年 | 139篇 |
1996年 | 148篇 |
1995年 | 209篇 |
1994年 | 215篇 |
1993年 | 118篇 |
1992年 | 148篇 |
1991年 | 78篇 |
1990年 | 72篇 |
1989年 | 138篇 |
1988年 | 67篇 |
1987年 | 66篇 |
1986年 | 72篇 |
1985年 | 192篇 |
1984年 | 180篇 |
1983年 | 150篇 |
1982年 | 148篇 |
1981年 | 239篇 |
1980年 | 68篇 |
1979年 | 63篇 |
1978年 | 63篇 |
1977年 | 52篇 |
1976年 | 54篇 |
1975年 | 53篇 |
1974年 | 50篇 |
1973年 | 49篇 |
1972年 | 59篇 |
1971年 | 40篇 |
1970年 | 40篇 |
排序方式: 共有7330条查询结果,搜索用时 19 毫秒
231.
Stark L. Tendick F. Kim W. Anderson R. Hisey M. Mills B. Matsunaga K. An Nguyen Ramos C. Tyler M. Zahalak G. Amick M. Baker B. Brown N. Brown T. Chang J. Jyh-Horng Chen Chik J. Cohen D. Cox D. Dubey J. Ellis K. Engdahl E. Frederickson C. Halamka J. Hauser R. Jacobs J. Lee C. Lee D. Liu A. Ninomiya R. Rudolph J. Schafer S. Schendel E. So G. Takeda M. Tam L. Thompson M. Wood E. Woodruff T. 《IEEE transactions on aerospace and electronic systems》1988,24(5):542-551
With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of `telepresence' that may be useful for prolonged tasks. Using top-down 3-D model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview model to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and, in this university environment, to basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics. Speculation as to future industrial drives for this telerobotic field suggests efficient roles for government agencies such as NASA 相似文献
232.
A technique is presented for controlling multiple manipulators which are holding a single object and therefore form a closed kinematic chain. The object, which may or may not be in contact with a rigid environment, is assumed to be held rigidly by n robot end-effectors. The derivation is based on setting up constraint equations which reduce the 6×n degrees of freedom of n manipulators each having six joints. Additional constraint equations are considered when one or more degrees of freedom of the object is reduced due to external constraints. Utilizing the operational space dynamic equations, a decoupling controller is designed to control both the position and the interaction forces of the object with the environment. Simulation results for the control of a pair of two-link manipulators are presented 相似文献
233.
Amin M.G. Liang Zhao Lindsey A.R. 《IEEE transactions on aerospace and electronic systems》2004,40(1):80-92
The mitigation of FM interference in GPS receivers is considered. In difference to commonly assumed wideband and narrowband interferers, the FM interferers are wideband, but instantaneously narrowband, and as such, have clear time-frequency (TF) signatures that are distinct from the GPS coarse acquisition (C/A) spread spectrum code. In the proposed technique, the estimate of the FM interference instantaneous frequency (IF) and the interference spatial signature are used to construct the spatiotemporal interference subspace. The IF estimates can be provided using existing effective linear or bilinear TF methods. The undesired signal arrival is suppressed by projecting the input data on the interference orthogonal subspace. With a multisensor receiver, the distinctions in both the spatial and TF signatures of signal arrivals allow effective interference suppressions. The deterministic nature of the signal model is considered and the known underlying structure of the GPS C/A code is utilized. We derive the receiver signal-to-interference-plus-noise ratio (SINR) under exact and perturbed IF values. The effect of IF estimation errors on both pseudorange measurements and navigation data recovery is analyzed. Simulation results comparing the receiver performances under IF errors in single and multiantenna GPS receivers are provided. 相似文献
234.
Track segment association, fine-step IMM and initialization with Doppler for improved track performance 总被引:2,自引:0,他引:2
Yeom S.-W. Kirubarajan T. Bar-Shalom Y. 《IEEE transactions on aerospace and electronic systems》2004,40(1):293-309
In this work we present a new track segment association technique to improve track continuity in large-scale target tracking problems where track breakages are common. A representative airborne early warning (AEW) system scenario, which is a challenging environment due to highly maneuvering targets, close target formations, large measurement errors, long sampling intervals, and low detection probabilities, provides the motivation for the new technique. Previously, a tracker using the interacting multiple model (IMM) estimator combined with an assignment algorithm was shown to be more reliable than a conventional Kalman filter based approach in tracking similar targets but it still yielded track breakages due to the difficult environment. In order to combine the broken track segments and improve track continuity, a new track segment association algorithm using a discrete optimization approach is presented. Simulation results show that track segment association yields significant improvements in mean track life as well as in position, speed, and course rms errors. Also presented is a modified one-point initialization technique with range rate measurements, which are typically ignored by other initialization techniques, and a fine-step IMM estimator, which improves performance in the presence of long revisit intervals. Another aspect that is investigated is the benefit of "deep" (multiframe or N-dimensional, with N > 2) association, which is shown to yield significant benefit in reducing the number of false tracks. 相似文献
235.
Limits in tracking with extended Kalman filters 总被引:1,自引:0,他引:1
Schlosser M.S. Kroschel K. 《IEEE transactions on aerospace and electronic systems》2004,40(4):1351-1359
The classical linearized conversion of measurements from polar or spherical coordinates to Cartesian ones generates a bias restricting the use of this conversion to cases where the bias can be neglected. In this work, the validity limits for the classical 2D transformation from polar to Cartesian coordinates, as derived in previous work, are shown to be too restrictive and the limits for the 3D transformation from spherical to Cartesian coordinates are introduced. Furthermore, quantitative measures for the performance degradation of the commonly used extended Kalman filter (EKF) in comparison with the best linear unbiased estimation (BLUE) filter are obtained by simulating typical tracking scenarios. 相似文献
236.
2001 Mars Odyssey Mission Summary 总被引:1,自引:0,他引:1
Saunders R.S. Arvidson R.E. Badhwar G.D. Boynton W.V. Christensen P.R. Cucinotta F.A. Feldman W.C. Gibbs R.G. Kloss C. Landano M.R. Mase R.A. McSmith G.W. Meyer M.A. Mitrofanov I.G. Pace G.D. Plaut J.J. Sidney W.P. Spencer D.A. Thompson T.W. Zeitlin C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months. 相似文献
237.
R. H. Brown K. H. Baines G. Bellucci J.-P. Bibring B. J. Buratti F. Capaccioni P. Cerroni R. N. Clark A. Coradini D. P. Cruikshank P. Drossart V. Formisano R. Jaumann Y. Langevin D. L. Matson T. B. Mccord V. Mennella E. Miller R. M. Nelson P. D. Nicholson B. Sicardy C. Sotin 《Space Science Reviews》2004,115(1-4):111-168
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date. 相似文献
238.
R. Srama T. J. Ahrens N. Altobelli S. Auer J. G. Bradley M. Burton V. V. Dikarev T. Economou H. Fechtig M. Görlich M. Grande A. Graps E. Grün O. Havnes S. Helfert M. Horanyi E. Igenbergs E. K. Jessberger T. V. Johnson S. Kempf A. V. Krivov H. Krüger A. Mocker-Ahlreep G. Moragas-Klostermeyer P. Lamy M. Landgraf D. Linkert G. Linkert F. Lura J. A. M. McDonnell D. Möhlmann G. E. Morfill M. Müller M. Roy G. Schäfer G. Schlotzhauer G. H. Schwehm F. Spahn M. Stübig J. Svestka V. Tschernjawski A. J. Tuzzolino R. Wäsch H. A. Zook 《Space Science Reviews》2004,114(1-4):465-518
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date. 相似文献
239.
Nandu Goswami Helmut K. Lackner Ilona Papousek Daniela Jezova Jean-Pierre Montani Helmut G. Hinghofer-Szalkay 《Acta Astronautica》2011,68(9-10):1509-1516
We assessed hemodynamic responses induced by orthostatic and mental stressors, using passive head up tilt (HUT) and mental arithmetic (MA), respectively. The 15 healthy males underwent three protocols: (1) HUT alone, (2) MA in supine position and (3) MA+HUT, with sessions randomized and ≥2 weeks apart. In relation to baseline, HUT increased heart rate (HR) (+20.4±7.1 bpm; p<0.001), mean blood pressure (MBP) (+4.7±11.3 mmHg; p<0.05), diastolic blood pressure (DBP) (+6.1±11.6 mmHg; p<0.05) and total peripheral resistance (TPR) (+155±232 dyne*s/cm5; p<0.001) but decreased stroke volume (SV) (?33.1±13.4 ml; p<0.001) and cardiac output (CO) (?0.6±1.0 l/min; p<0.01). MA increased HR (+8.0±6.0 bpm; p<0.001), systolic blood pressure (SBP) (+9.0±7.7 mmHg; p<0.001), MBP (+10.0±6.5 mmHg; p<0.001), DBP (+9.5±7.2 mmHg; p<0.001) and CO (+0.6±0.8 l/min; p<0.01). MA+HUT increased HR (+28.8±8.4 bpm; p<0.001), SBP (+4.6±14.3 mmHg; p<0.05), MBP (+11.2±11.6 mmHg; p<0.001), DBP (+13.5±10.1 mmHg; p<0.001) and TPR (+160±199 dyne*s/cm5; p<0.001) but SV (?34.5±14.6 ml; p<0.001) decreased. Mental challenge during orthostatic challenge elicited greater increases in heart rate, despite similar reductions in stroke volume such as those during orthostatic stress alone. Overall, cardiac output decreases were less with combinations of mental and orthostatic challenges in comparison to orthostasis alone. This would suggest that carefully chosen mental stressors might affect orthostatic responses of people on standing up. Therefore, additional mental loading could be a useful countermeasure to alleviate the orthostatic responses of persons, particularly in those with histories of dizziness on standing up or on return to earth from the spaceflight environment of microgravity. 相似文献
240.
Marco B. Quadrelli Paul Backes W. Keats Wilkie Lou Giersch Ubaldo Quijano Jason Keim Daniel Scharf Rudranarayan Mukherjee S. Case Bradford Michael McKee 《Acta Astronautica》2011,68(7-8):947-973
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing material equilibrium phases, is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan. 相似文献