排序方式: 共有60条查询结果,搜索用时 15 毫秒
41.
T Ohnishi A Takahashi K Ohnishi S Takahashi M Masukawa K Sekikawa T Amano T Nakano S Nagaoka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):563-568
In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency. 相似文献
42.
43.
Differentiation of Dictyostelium discoideum vegetative cells into spores during Earth orbit in space. 总被引:1,自引:0,他引:1
A Takahashi K Ohnishi S Takahashi M Masukawa K Sekikawa T Amano T Nakano S Nagaoka T Ohnishi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):549-553
We reported previously that emerged amoebae of Dictyostelium (D.) discoideum grew, aggregated and differentiated to fruiting bodies with normal morphology in space. Here, we investigated the effects of space radiation and/or microgravity on the number, viability, kinetics of germination, growth rate and mutation frequency of spores formed in space in a radiation-sensitive strain, gamma s13, and the parental strain, NC4. In gamma s13, there were hardly spores in the fruiting bodies formed in space. In NC4, we found a decrease in the number of spores, a delay in germination of the spores and delayed start of cell growth of the spores formed in space when compared to the ground control. However, the mutation frequency of the NC4 spores formed in space was similar to that of the ground control. We conclude that the depression of spore formation might be induced by microgravity and/or space radiation through the depression of some stage(s) of DNA repair during cell differentiation in the slime mold. 相似文献
44.
T. A. Parnell T. H. Burnett S. Dake J. H. Derrickson W. F. Fountain M. Fuki J. C. Gregory T. Hayashi R. Holynski J. Iwai W. V. Jones A. Jurak J. J. Lord O. Miyamura H. Oda T. Ogata F. E. Roberts S. Strausz T. Tabuki Y. Takahashi T. Tominaga J. W. Watts J. P. Wefel B. Wilczynska H. Wilczynski R. J. Wilkes W. Wolter B. Wosiek 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(12):45-54
Direct measurements on cosmic ray protons through iron above about 1 TeV/amu have been performed in a series of balloon-borne experiments with emulsion chambers. The measured energy spectra of protons and helium are power laws with exponents of 2.77 ± 0.09 and 2.72 ± 0.11 in the energy range 5 to 500 TeV and 2 to 50 TeV/amu, respectively. The proton spectrum shows no evidence of the steepening near 2 TeV which was reported by other experiments. Helium has a slightly higher intensity compared to extrapolations from lower energy measurements. The heavier elements, carbon to sulfur, show a small tendency for intensity enhancement in the relative abundance above 10 TeV/amu. 相似文献
45.
Scott D. Barthelmy Louis M. Barbier Jay R. Cummings Ed E. Fenimore Neil Gehrels Derek Hullinger Hans A. Krimm Craig B. Markwardt David M. Palmer Ann Parsons Goro Sato Masaya Suzuki Tadayuki Takahashi Makota Tashiro Jack Tueller 《Space Science Reviews》2005,120(3-4):143-164
he burst alert telescope (BAT) is one of three instruments on the
Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an
accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to
point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical
observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed
of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a
1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution,
a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky
hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor. 相似文献
46.
A. Takahashi H. Suzuki K. Omori M. Seki T. Hashizume T. Shimazu N. Ishioka T. Ohnishi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The 53 kDa tumor suppressor protein p53 is generally thought to contribute to the genetic stability of cells and to protect cells from DNA damage through the activity of p53-centered signal transduction pathways. To clarify the effect of space radiation on the expression of p53-dependent regulated genes, gene expression profiles were compared between two human cultured lymphoblastoid cell lines: one line (TSCE5) has a wild-type p53 gene status, and the other line (WTK1) has a mutated p53 gene status. Frozen human lymphoblastoid cells were stored in a freezer in the International Space Station (ISS) for 133 days. Gene expression was analyzed using DNA chips after culturing the space samples for 6 h on the ground after their return from space. Ground control samples were also cultured for 6 h after being stored in a frozen state on the ground for the same time period that the frozen cells were in space. p53-Dependent gene expression was calculated from the ratio of the gene expression values in wild-type p53 cells and in mutated p53 cells. The expression of 50 p53-dependent genes was up-regulated, and the expression of 94 p53-dependent genes was down-regulated after spaceflight. These expression data identified genes which could be useful in advancing studies in basic space radiation biology. The biological meaning of these results is discussed from the aspect of gene functions in the up- and down-regulated genes after exposure to low doses of space radiation. 相似文献
47.
F. Yatagai M. Honma A. Ukai K. Omori H. Suzuki T. Shimazu A. Takahashi T. Ohnishi N. Dohmae N. Ishioka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In view of the concern for the health of astronauts that may one day journey to Mars or the Moon, we investigated the effect that space radiation and microgravity might have on DNA damage and repair. We sent frozen human lymphoblastoid TK6 cells to the International Space Station where they were maintained under frozen conditions during a 134-day mission (14 November 2008 to 28 March 2009) except for an incubation period of 8 days under 1G or μG conditions in a CO2 incubator. The incubation period started after 100 days during which the cells had been exposed to 54 mSv of space radiation. The incubated cells were then refrozen, returned to Earth, and compared to ground control samples for the determination of the influence of microgravity on cell survival and mutation induction. The results for both varied from experiment to experiment, yielding a large SD, but the μG sample results differed significantly from the 1G sample results for each of 2 experiments, with the mean ratio of μG to 1G being 0.55 for the concentration of viable cells and 0.59 for the fraction of thymidine kinase deficient (TK−) mutants. Among the mutants, non-loss of zygosity events (point mutations) were less frequent (31%) after μG incubation than after 1G incubation, which might be explained by the influence of μG on cellular metabolic or physiological function. Additional experiments are needed to clarify the effect of μG interferes on DNA repair. 相似文献
48.
Masaki Matsushima Hideo Tsunakawa Yu-ichi Iijima Satoru Nakazawa Ayako Matsuoka Shingo Ikegami Tomoaki Ishikawa Hidetoshi Shibuya Hisayoshi Shimizu Futoshi Takahashi 《Space Science Reviews》2010,154(1-4):253-264
To achieve the scientific objectives related to the lunar magnetic field measurements in a polar orbit at an altitude of 100 km, strict electromagnetic compatibility (EMC) requirements were applied to all components and subsystems of the SELENE (Kaguya) spacecraft. The magnetic cleanliness program was defined as one of the EMC control procedures, and magnetic tests were carried out for most of the engineering and flight models. The EMC performance of all components was systematically controlled and examined through a series of EMC tests. As a result, the Kaguya spacecraft was made to be very clean, magnetically. Hence reliable scientific data related to the magnetic field around the Moon were obtained by the LMAG (Lunar MAGnetometer) and the PACE (Plasma energy Angle and Composition Experiment) onboard the Kaguya spacecraft. These data have been available for lunar science use since November 2009. 相似文献
49.
In-flight Performance and Initial Results of Plasma Energy Angle and Composition Experiment (PACE) on SELENE (Kaguya) 总被引:1,自引:0,他引:1
Yoshifumi Saito Shoichiro Yokota Kazushi Asamura Takaaki Tanaka Masaki N. Nishino Tadateru Yamamoto Yuta Terakawa Masaki Fujimoto Hiroshi Hasegawa Hajime Hayakawa Masafumi Hirahara Masahiro Hoshino Shinobu Machida Toshifumi Mukai Tsugunobu Nagai Tsutomu Nagatsuma Tomoko Nakagawa Masato Nakamura Koh-ichiro Oyama Eiichi Sagawa Susumu Sasaki Kanako Seki Iku Shinohara Toshio Terasawa Hideo Tsunakawa Hidetoshi Shibuya Masaki Matsushima Hisayoshi Shimizu Futoshi Takahashi 《Space Science Reviews》2010,154(1-4):265-303
MAP-PACE (MAgnetic field and Plasma experiment—Plasma energy Angle and Composition Experiment) on SELENE (Kaguya) has completed its ~1.5-year observation of low-energy charged particles around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measured the distribution function of low-energy electrons in the energy range 6 eV–9 keV and 9 eV–16 keV, respectively. IMA and IEA measured the distribution function of low-energy ions in the energy ranges 7 eV/q–28 keV/q and 7 eV/q–29 keV/q. All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor has a hemispherical field of view, two electron sensors and two ion sensors installed on the spacecraft panels opposite each other could cover the full 3-dimensional phase space of low-energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measured mass-specific ion energy spectra that have never before been obtained at a 100 km altitude polar orbit around the Moon. The newly observed data show characteristic ion populations around the Moon. Besides the solar wind, MAP-PACE-IMA found four clearly distinguishable ion populations on the dayside of the Moon: (1) Solar wind protons backscattered at the lunar surface, (2) Solar wind protons reflected by magnetic anomalies on the lunar surface, (3) Reflected/backscattered protons picked-up by the solar wind, and (4) Ions originating from the lunar surface/lunar exosphere. 相似文献
50.
H. Takahashi M. Takano N. Fujii A. Higashitani M. Yamashita T. Hirasawa K. Nishitani 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2021-2028
Roots have been shown to respond to a moisture gradient by positive hydrotropism. Agravitropic mutant plants are useful for the study of the hydrotropism in roots because on Earth hydrotropism is obviously altered by the gravity response in the roots of normally gravitropic plants. The roots are able to sense water potential gradient as small as 0.5 MPa mm−1. The root cap includes the sensing apparatus that causes a differential growth at the elongation region of roots. A gradient in apoplastic calcium and calcium influx through plasmamembrane in the root cap is somehow involved in the signal transduction mechanism in hydrotropism, which may cause a differential change in cell wall extensibility at the elongation region. We have isolated an endoxy loglucan transferase (EXGT) gene that is strongly expressed in pea roots and appears to be involved in the differential growth in hydrotropically responding roots. Thus, it is now possible to study hydrotropism in roots by comparing with or separate from gravitropism. These results also imply that microgravity conditions in space are useful for the study of hydrotropism and its interaction with gravitropism. 相似文献