首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2585篇
  免费   2篇
  国内免费   7篇
航空   1284篇
航天技术   1007篇
综合类   7篇
航天   296篇
  2021年   15篇
  2019年   16篇
  2018年   42篇
  2017年   34篇
  2016年   25篇
  2015年   13篇
  2014年   52篇
  2013年   61篇
  2012年   50篇
  2011年   92篇
  2010年   68篇
  2009年   113篇
  2008年   156篇
  2007年   66篇
  2006年   50篇
  2005年   66篇
  2004年   73篇
  2003年   96篇
  2002年   48篇
  2001年   104篇
  2000年   50篇
  1999年   90篇
  1998年   87篇
  1997年   65篇
  1996年   65篇
  1995年   89篇
  1994年   98篇
  1993年   38篇
  1992年   61篇
  1991年   23篇
  1990年   29篇
  1989年   58篇
  1988年   20篇
  1987年   37篇
  1986年   19篇
  1985年   76篇
  1984年   42篇
  1983年   46篇
  1982年   57篇
  1981年   80篇
  1980年   28篇
  1979年   26篇
  1978年   23篇
  1977年   18篇
  1976年   16篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   9篇
排序方式: 共有2594条查询结果,搜索用时 218 毫秒
701.
The evolution of Mars is discussed using results from the recent Mars Global Surveyor (MGS) and Mars Pathfinder missions together with results from mantle convection and thermal history models and the chemistry of Martian meteorites. The new MGS topography and gravity data and the data on the rotation of Mars from Mars Pathfinder constrain models of the present interior structure and allow estimates of present crust thickness and thickness variations. The data also allow estimates of lithosphere thickness variation and heat flow assuming that the base of the lithosphere is an isotherm. Although the interpretation is not unambiguous, it can be concluded that Mars has a substantial crust. It may be about 50 km thick on average with thickness variations of another ±50 km. Alternatively, the crust may be substantially thicker with smaller thickness variations. The former estimate of crust thickness can be shown to be in agreement with estimates of volcanic production rates from geologic mapping using data from the camera on MGS and previous missions. According to these estimates most of the crust was produced in the Noachian, roughly the first Gyr of evolution. A substantial part of the lava generated during this time apparently poured onto the surface to produce the Tharsis bulge, the largest tectonic unit in the solar system and the major volcanic center of Mars. Models of crust growth that couple crust growth to mantle convection and thermal evolution are consistent with an early 1 Gyr long phase of vigorous volcanic activity. The simplest explanation for the remnant magnetization of crustal units of mostly the southern hemisphere calls for an active dynamo in the Noachian, again consistent with thermal history calculations that predict the core to become stably stratified after some hundred Myr of convective cooling and dynamo action. The isotope record of the Martian meteorites suggest that the core formed early and rapidly within a few tens of Myr. These data also suggest that the silicate rock component of the planet was partially molten during that time. The isotope data suggest that heterogeneity resulted from core formation and early differentiation and persisted to the recent past. This is often taken as evidence against vigorous mantle convection and early plate tectonics on Mars although the latter assumption can most easily explain the early magnetic field. The physics of mantle convection suggests that there may be a few hundred km thick stagnant, near surface layer in the mantle that would have formed rapidly and may have provided the reservoirs required to explain the isotope data. The relation between the planform of mantle convection and the tectonic features on the surface is difficult to entangle. Models call for long wavelength forms of flow and possibly a few strong plumes in the very early evolution. These plumes may have dissolved with time as the core cooled and may have died off by the end of the Noachian.  相似文献   
702.
Radar signal processing is particularly important in tracking closely spaced targets and targets in the presence of sea-surface-induced multipath. Closely spaced targets can produce unresolved measurements when they occupy the same range cell of the radar. These issues are the salient features of the benchmark problem for tracking unresolved targets combined with radar management, for which this paper presents the only complete solution to date. In this paper a modified version of a recently developed maximum likelihood (ML) angle estimator, which can produce two measurements from a single (unresolved) detection, is presented. A modified generalized likelihood ratio test (GLRT) is also described to detect the presence of two unresolved targets. Sea-surface-induced multipath can produce a severe bias in the elevation angle measurement when the conventional monopulse ratio angle extractor method is used. A modified version of a recently developed ML angle extractor, which produces nearly unbiased elevation angle measurements and significantly improves the track accuracy, is presented. Efficient radar resource allocation algorithms for two closely spaced targets and targets flying close to the sea surface are also presented. Finally, the IMMPDAF (interacting multiple model estimator with probabilistic data association filter modules) is used to track these targets. It is found that a two-model IMMPDAF performs better than the three-model version used in the previous benchmark. Also, the IMMPDAF with a coordinated turn model works better than the one using a Wiener process acceleration model. The signal processing and tracking algorithms presented here, operating in a feedback manner, form a comprehensive solution to the most realistic tracking and radar management problem to date.  相似文献   
703.
Many practical problems arise when implementing digital terrain data in airborne knowledge-aided (KA) space-time adaptive processing (STAP). This paper addresses these issues and presents solutions with numerical implementations. In particular, using digital land classification data and digital elevation data, techniques are developed for registering these data with radar return signals, correcting for Doppler and spatial misalignments, adjusting for antenna gain, characterizing clutter patches for secondary data selection, and ensuring independent secondary data samples. These techniques are applied to select secondary data for a single-bin post-Doppler STAP algorithm using multi-channel airborne radar measurement (MCARM) program data. Results with the KA approach are compared with those obtained using the standard sliding window method for choosing secondary data. These results illustrate the benefits of using terrain information, a priori data about the radar, and the importance of statistical independence when selecting secondary data for improving STAP performance  相似文献   
704.
As comet 9P/Tempel 1 approaches the Sun in 2004–2005, a temporary atmosphere, or “coma,” will form, composed of molecules and dust expelled from the nucleus as its component icy volatiles sublimate. Driven mainly by water ice sublimation at surface temperatures T > 200 K, this coma is a gravitationally unbound atmosphere in free adiabatic expansion. Near the nucleus (≤ 102 km), it is in collisional equilibrium, at larger distances (≥104 km) it is in free molecular flow. Ultimately the coma components are swept into the comet’s plasma and dust tails or simply dissipate into interplanetary space. Clues to the nature of the cometary nucleus are contained in the chemistry and physics of the coma, as well as with its variability with time, orbital position, and heliocentric distance. The DI instrument payload includes CCD cameras with broadband filters covering the optical spectrum, allowing for sensitive measurement of dust in the comet’s coma, and a number of narrowband filters for studying the spatial distribution of several gas species. DI also carries the first near-infrared spectrometer to a comet flyby since the VEGA mission to Halley in 1986. This spectrograph will allow detection of gas emission lines from the coma in unprecedented detail. Here we discuss the current state of understanding of the 9P/Tempel 1 coma, our expectations for the measurements DI will obtain, and the predicted hazards that the coma presents for the spacecraft. An erratum to this article is available at .  相似文献   
705.
Analytical studies of reconnection have, for the most part, been confined to steady and uniform current sheet geometries. In contrast to these implifications, natural phenomena associated with the presence of current sheets indicate highly non-uniform structure and time-varying behaviour. Examples include the violent outbursts of energy on the Sun known as solar flares, and magnetospheric phenomena such as flux transfer events, plasmoids, and auroral activity. Unlike the theoretical models, reconnection therefore occurs in a highly dynamic and structured plasma environment. In this article we review the mathematical tools and techniques which are available to formulate models capable of describing the effects of reconnection in such situations. We confine attention to variants of the reconnection model first discussed by Petschek in the 1960s, in view of its successful application in predicting and interpreting phenomena in the terrestrial magnetosphere. The analysis of Petschek-type reconnection is based on the equations of ideal magnetohydrodynamics (MHD), which describe the large-scale behaviour of the magnetic field and plasma flow outside the diffusion region, which we determine as a localised part of the current sheet in which reconnection is initiated. The approach we adopt here is to transform the MHD equations into a Lagrangian or so-called 'frozen-in' coordinate system. In this coordinate system, the equation of motion transforms into a set of coupled nonlinear equations, in which the presence of inhomogeneous magnetic fields and/or plasma flows gives rise to a term similar to that which appears in the study of the ordinary string equation in a non-homogeneous medium. As demonstrated here, this approach not only clarifies and highlights the effects of such non-uniformities, it also simplifies the solution of the original set of MHD equations. In particular, this is true for those types of problem in which the total pressure can be considered as a known quantity from the outset. To illustrate the method, we solve several 2D problems involving magnetic field and flow non-uniformities: reconnection in a stagnation-point flow geometry with antiparallel magnetic fields; reconnection in a Y-type magnetic field geometry with and without velocity shear across the current sheet; and reconnection in a force-free magnetic field geometry with field lines of the form xy = const. These case examples, chosen for their tractability, each incorporate some aspects of the field and flow geomtries encountered in solar-terrestrial applications, and they provide a starting point for further analytical as well as numerical studies of reconnection.  相似文献   
706.
For pt. I see ibid., vol. 37, no. 4, pp. 1194-1206 (2001).This paper presents the derivation of a polarimetric coherent adaptive scheme to detect a radar target against a non-Gaussian background. This completes the results presented in Part I for the Gaussian background. A Texture Free-Generalized Likelihood Ratio Test (TF-GLRT) detector is derived that exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. The proposed polarimetric detector is shown to have Constant False Alarm Rate (CFAR) when operating against compound-Gaussian clutter with unknown parameters. Its performance is fully characterized by both theoretical analysis and simulation. Moreover, the application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   
707.
The concept of position determination using geostationary satellites as an alternative to the global positioning system (GPS) is studied. The advantage of a geostationary system is that only three, or at most four, satellites are required to cover the continental United States. A total of twelve satellites are sufficient for global coverage (excluding polar regions), or eight if only longitude and latitude, but not altitude, are measured. The system involves the determination of the range to either four geostationary satellites or, if the altitude is not measured, three geostationary satellites. The accuracy of the proposed systems are evaluated to obtain the rms error associated with position determination, and the concept for the implementation of measurements required by the systems is presented. The accuracy of the systems are adequate for civilian use in the continental United States; however, there is a degradation in accuracy as the location of the user approaches the equator.  相似文献   
708.
709.
本文进行了对比性的实验,以研究相变材料微胶囊(MEPCM)-水悬浮液在水力直径为2.71mm的矩形小通道内的层流流动传热性能.实验中用的MEPCM颗粒的平均粒径为4.97μm,与蒸馏水混合制备成质量浓度范围为0~20%的MEPCM-水悬浮液.对比性的实验是指,在相同的悬浮液质量流量和热力条件下,使用不同浓度的MEPCM悬浮液进行传热实验.实验发现,MEPCM悬浮液的冷却性能严重依赖于悬浮液的质量流量和悬浮液的质量浓度.质量浓度为5%的悬浮液在在整个质量流量范围内总是表现出比水好的冷却性能,它对应的是更低的壁面温度以及更好的传热系数.而对于更高质量浓度的悬浮液,在低质量流量的情况下,它们具有很好的冷却性能;而在高质量流量的情况下,它们表现出的冷却性能比水更差,它们对应更高的壁面温度以及更低的Nusselt数.  相似文献   
710.
The history of range instrumentation radars begins at the end of World War 11, with the SCR-584 radar. Since then, the use of instrumentation radars on ranges all over the globe has expanded greatly to gather metric performance data on aircraft, projectiles, missiles, and satellites. In this paper, key subsystem-level and system-level developments during the past decade are reviewed, including pulse-Doppler, digital range systems, calibration techniques, computer usage, and dualfrequency systems. Recently developed instrumentation radars from domestic and foreign sources are described as are three unique high-power large-aperture systems used for satellite and ballisticmissile measurements. The paper concludes by examining the likely requirements for instrumentation radars of the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号