首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   0篇
  国内免费   1篇
航空   74篇
航天技术   23篇
综合类   1篇
航天   25篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
11.
We study the directional stability of rigid and deformable spinning satellites in terms of two attitude angles. The linearized attitude motion of a free system about an assumed uniform-spin reference solution leads to a generic MGK system when the satellite is rigid or deformable. In terms of Lyapunov’s stability theory, we investigate the stability with respect to a subset of the variables. For a rigid body, the MGK system is 6-dimensional, i.e., 3 rotational and 3 translational variables. When flexible parts are present the system can have any arbitrary dimension. The 2×2 McIntyre–Myiagi stability matrix gives sufficient conditions for the attitude stability. A further development of this method has led to the Equivalent Rigid Body method. We propose an alternative practical method to establish sufficiency conditions for directional stability by using the Frobenius–Schur reduction formula. As practical applications we discuss a spinning satellite augmented with a spring–mass system and a rigid body appended with two cables and tip masses. In practice, the attitude stability must also be investigated when the spinning satellite is subject to a constant axial thrust. The generic format becomes MGKN as the thrust is a follower force. For a perfectly aligned thrust along the spin axis, Lyapunov’s indirect method remains valid also when deformable parts are present. We illustrate this case with an apogee motor burn in the presence of slag. When the thrust is not on the spin axis or not pointing parallel to the spin axis, the uniform-spin reference motion does not exist and none of the previous methods is applicable. In this case, the linearization may be performed about the initial state. Even when the linearized system has bounded solutions, the non-linear system can be unstable in general. We illustrate this situation by an instability that actually happened in-flight during a station-keeping maneuver of ESA’s GEOS-I satellite in 1979.  相似文献   
12.
This paper discusses atmospheric ions and their role in aerosol formation. Emphasis is placed upon the upper troposphere where very low temperatures tend to facilitate new particle formation by nucleation. New measurements addressed include: Laboratory measurements of cluster ions, aircraft measurements of ambient atmospheric ions, atmospheric measurements of the powerful nucleating gas H2SO4 and its gaseous precursor SO2. The paper also discusses model simulations of aerosol formation and growth. It is concluded that in the upper troposphere new aerosol formation via ions is a frequent process with relatively large rates. However new particle formation by homogeneous nucleation which does not involve ions also seems to be efficient. The bottleneck in the formation of upper troposphere aerosol particles with sizes sufficiently large to be climate relevant is mostly not nucleation but sufficient growth of new and still very small particles. Our recent upper troposphere SO2 measurements suggest that particle growth by gaseous sulphuric acid condensation can be efficient in certain circumstances. If so, cosmic ray mediated formation of CCN sized particles should at least occasionally be operative in the upper troposphere.  相似文献   
13.
14.
For the first time, the International DORIS Service (IDS) has produced a technique level combination based on the contributions of seven analysis centers (ACs), including the European Space Operations Center (ESOC), Geodetic Observatory Pecny (GOP), Geoscience Australia (GAU), the NASA Goddard Space Flight Center (GSFC), the Institut Géographique National (IGN), the Institute of Astronomy, Russian Academy of Sciences (INASAN, named as INA), and CNES/CLS (named as LCA). The ACs used five different software packages to process the DORIS data from 1992 to 2008, including NAPEOS (ESA), Bernese (GOP), GEODYN (GAU, GSC), GIPSY/OASIS (INA), and GINS (LCA). The data from seven DORIS satellites, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5, Envisat and Jason-1 were processed and all the analysis centers produced weekly SINEX files in either variance–covariance or normal equation format. The processing by the analysis centers used the latest GRACE-derived gravity models, forward modelling of atmospheric gravity, updates to the radiation pressure modelling to improve the DORIS geocenter solutions, denser parameterization of empirically determined drag coefficients to improve station and EOP solutions, especially near the solar maximum in 2001–2002, updated troposphere mapping functions, and an ITRF2005-derived station set for orbit determination, DPOD2005. The CATREF software was used to process the weekly AC solutions, and produce three iterations of an IDS global weekly combination. Between the development of the initial solution IDS-1, and the final solution, IDS-3, the ACs improved their analysis strategies and submitted updated solutions to eliminate troposphere-derived biases in the solution scale, to reduce drag-related degradations in station positioning, and to refine the estimation strategy to improve the combination geocenter solution. An analysis of the frequency content of the individual AC geocenter and scale solutions was used as the basis to define the scale and geocenter of the IDS-3 combination. The final IDS-3 combination has an internal position consistency (WRMS) that is 15 to 20 mm before 2002 and 8 to 10 mm after 2002, when 4 or 5 satellites contribute to the weekly solutions. The final IDS-3 combination includes solutions for 130 DORIS stations on 67 different sites of which 35 have occupations over 16 years (1993.0–2009.0). The EOPs from the IDS-3 combination were compared with the IERS 05 C04 time series and the RMS agreement was 0.24 mas and 0.35 mas for the X and Y components of polar motion. The comparison to ITRF2005 in station position shows an agreement of 6 to 8 mm RMS in horizontal and 10.3 mm in height. The RMS comparison to ITRF2005 in station velocity is at 1.8 mm/year on the East component, to 1.2 mm/year in North component and 1.6 mm/year in height.  相似文献   
15.
    
  相似文献   
16.
Thin films containing a mixture of aliphatic (glycine) and aromatic (tryptophan or tyrosine) amino acids were exposed to a vacuum ultraviolet radiation (VUV) with wavelenghts 100–200 nm. Dipeptides (glycyl-tryptophan and glycyl-tyrosine) were synthesized in these conditions. We compared the actions of VUV and γ-radiation. Polymerization is an essential step in prebiological evolution and we have shown that this stage probably occured over an early Solar system history.  相似文献   
17.
Waves and instabilities in dusty space plasmas   总被引:1,自引:0,他引:1  
  相似文献   
18.
Radiation exposures are typically characterized by two quantities. The first is the absorbed dose, or the energy deposited per unit mass for specific types of radiation passing through specified materials. The same amount of energy deposited in material by two different types of radiation, however, can result in two different levels of risk. Because of this, for the purpose of radiation protection operations, absorbed dose is modified by a second factor intended to normalize the risk associated with a given exposure. We present here an inter-comparison of methods for this modification. First is the radiation quality factor (Q), as defined by ICRP publication 60. This quantity is related functionally to the unrestricted linear energy transfer (LET) of a given radiation, and is multiplied by the absorbed dose to derive the dose equivalent (H). The second method for modifying absorbed dose is the radiation weighting factor, also given in ICRP-60, or as modified in NCRP report 115. To implement the weighting factor, the absorbed dose resulting from incidence of a particular radiation is multiplied by a factor assigned to that type of radiation, giving the equivalent dose. We compare calculations done based on identical fields of radiation representative of that encountered by the MIR space station, applying each of these two methods.  相似文献   
19.
20.
The architecture and technology features of the next-generation (NGR) digital GPS (Global Positioning System) receiver manufactured by Collin are described. The project's objective was to develop an advanced GPS receiver chipset with high antijam capabilities. The program, initiated in 1985, has provided the technology for miniature receiver products for both unmanned and manned vehicle applications. A two-channel version of the receiver is in full-scale development for tactical missile applications. A five-channel version is being tested and evaluated as a drop-in replacement for RCVR-3A, the US Department of Defense standard high dynamic receiver. The NGR design started with the digital signal processing architecture developed for the Defense Advanced Research Project Agency (DARPA) hand-held GPS receiver. Enhancements were made to improve the antijam and signal acquisition performance. Producible, qualifiable and cost-effective silicon monolithic microwave integrated circuits and semicustom digital technologies were used to develop the core GPS chipset. A system design approach was established to permit reuse of mature and validated GPS software  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号