首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   1篇
  国内免费   5篇
航空   198篇
航天技术   76篇
综合类   1篇
航天   56篇
  2022年   2篇
  2021年   5篇
  2019年   3篇
  2018年   34篇
  2017年   20篇
  2016年   1篇
  2015年   9篇
  2014年   5篇
  2013年   14篇
  2012年   8篇
  2011年   12篇
  2010年   16篇
  2009年   17篇
  2008年   14篇
  2007年   15篇
  2006年   14篇
  2005年   12篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   8篇
  2000年   6篇
  1999年   10篇
  1998年   5篇
  1997年   9篇
  1996年   2篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   9篇
  1984年   13篇
  1983年   3篇
  1982年   5篇
  1981年   10篇
  1980年   1篇
  1978年   1篇
  1972年   1篇
  1970年   2篇
  1967年   1篇
  1963年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
81.
The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2–80 cm-3. This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wave analysis function of the instrument is provided by FFT calculation. Compared with the swept frequency wave analysis of previous sounders, this technique has several new capabilities. In particular, when used for natural wave measurements (which cover here the 2–80 kHz range), it offers a flexible trade-off between time and frequency resolutions. In the basic nominal operational mode, the density is measured every 28 s, the frequency and time resolution for the wave measurements are about 600 Hz and 2.2 s, respectively. Better resolutions can be obtained, especially when the spacecraft telemetry is in burst mode. Special attention has been paid to the coordination of WHISPER operations with the wave instruments, as well as with the low-energy particle counters. When operated from the multi-spacecraft Cluster, the WHISPER instrument is expected to contribute in particular to the study of plasma waves in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere.  相似文献   
82.
83.
This article presents some of the new and important particle features that have been detected in the energy range 1 keV to 290 keV by the ISEE-1 and -2 spacecraft near the magnetopause, bow shock, and the interplanetary space. Only examples of data from the first few orbits, when the spacecraft were on the front side, are shown.Paper presented at 13th ESLAB Symposium, Innsbruck, Austria (June 5, 1978).  相似文献   
84.
A theory of the origin and evolution of the Solar System (Alfvén and Arrhenius, 1975, 1976) which considered electromagnetic forces and plasma effects is revised in the light of new information supplied by space research. In situ measurements in the magnetospheres and solar wind have changed our views of basic properties of cosmic plasmas. These results can be extrapolated both outwards in space, to interstellar clouds, and backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of some cloud properties which are essential for the early phases in the formation of stars and solar nebulae. The latter extrapolation makes possible to approach the cosmogonic processes by extrapolation of (rather) well-known magnetospheric phenomena.Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it seems possible to reconstruct certain events 4–5 billion years ago with an accuracy of a few percent. This will cause a change in our views of the evolution of the solar system.  相似文献   
85.
Using data from the Mars Express Ion Mass Analyzer (IMA) we investigate the distribution of ion beams of planetary origin and search for an influence from Mars crustal magnetic anomalies. We have concentrated on ion beams observed inside the induced magnetosphere boundary (magnetic pile-up boundary). Some north-south asymmetry is seen in the data, but no longitudinal structure resembling that of the crustal anomalies. Comparing the occurrence rate of ion beams with magnetic field strength at 400 km altitude below the spacecraft (using statistical Mars Global Surveyor results) shows a decrease of the occurrence rate for modest (< 40 nT) magnetic fields. Higher magnetic field regions (above 40 nT at 400 km) are sampled so seldom that the statistics are poor but the data is consistent with some ion outflow events being closely associated with the stronger anomalies. This ion flow does not significantly affect the overall distribution of ion beams around Mars.  相似文献   
86.
This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.  相似文献   
87.
The relative abundances of low energy ions (0.6–2.0 MeV/n) in solar energetic particle (SEP) and corotating interaction region (CIR) events have been measured by the EPAC experiment aboard Ulysses since launch in October 1990 until the present time. We give an overview of the abundances of heavy ions (He, C, Ne, Fe) relative to oxygen during energetic particle events lasting longer than 5 days during the in- and out-of-ecliptic phase of the mission. While the period Oct. 1990 to Aug. 1992 was dominated by high solar activity the Ulysses out of ecliptic passage at solar latitudes up to 45° went parallel to the declining phase of solar activity. Thus a very clear structure of corotating interaction regions was observed. While the in-ecliptic composition is in general agreement with measurements made near the Earth, the development of the CIR-composition shows two phases: From Aug. 1992 to May 1993 the C/O-ratio is 0.55–0.70, afterwards it increases to 0.8–0.9. This increase is correlated to the disappearance of the current sheet at 30° solar latitude reported by Smithet al. (1993).  相似文献   
88.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   
89.
André  Mats  Yau  Andrew 《Space Science Reviews》1997,80(1-2):27-48
A review is given of several mechanisms causing outflow at high latitudes of ionospheric ions to the terrestrial magnetosphere. The upward ion motion along the geomaagnetic field can be divided into several categories, including polar wind, bulk ion outflow in the auroral region, upwelling ions and ion conics and beams. More than one ion energization mechanism can be operating within each category, and a combination of categories is important for the total ion outflow.  相似文献   
90.
Corotating interaction regions (CIRs) in the middle heliosphere have distinct morphological features and associated patterns of turbulence and energetic particles. This report summarizes current understanding of those features and patterns, discusses how they can vary from case to case and with distance from the Sun and possible causes of those variations, presents an analytical model of the morphological features found in earlier qualitative models and numerical simulations, and identifies aspects of the features and patterns that have yet to be resolved. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号