首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2559篇
  免费   15篇
  国内免费   11篇
航空   1317篇
航天技术   857篇
综合类   16篇
航天   395篇
  2021年   24篇
  2019年   15篇
  2018年   95篇
  2017年   53篇
  2016年   30篇
  2015年   15篇
  2014年   49篇
  2013年   70篇
  2012年   57篇
  2011年   107篇
  2010年   73篇
  2009年   100篇
  2008年   102篇
  2007年   67篇
  2006年   51篇
  2005年   70篇
  2004年   76篇
  2003年   72篇
  2002年   37篇
  2001年   67篇
  2000年   49篇
  1999年   54篇
  1998年   68篇
  1997年   43篇
  1996年   70篇
  1995年   84篇
  1994年   58篇
  1993年   52篇
  1992年   69篇
  1991年   31篇
  1990年   19篇
  1989年   49篇
  1988年   23篇
  1987年   20篇
  1986年   21篇
  1985年   96篇
  1984年   62篇
  1983年   54篇
  1982年   63篇
  1981年   86篇
  1980年   22篇
  1979年   26篇
  1978年   26篇
  1977年   27篇
  1976年   20篇
  1975年   21篇
  1974年   20篇
  1972年   15篇
  1970年   18篇
  1969年   21篇
排序方式: 共有2585条查询结果,搜索用时 470 毫秒
51.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   
52.
The global network of meteorological satellites used different forms of international cooperation during its development, and some of these forms continue. Concern about continued operation of the global network led the WMO to study the issues and to adopt a long-term policy and strategy based on a shared meteorological satellite network. Nations need to consider how to combine their meteorological and space-related organizations in a partnership role, so they can directly contribute to a future global network of meteorological satellites. Some examples are cited to demonstrate that increased direct participation is a valid and feasible objective.  相似文献   
53.
A major problem with operations of lifting reentry vehicle having an aft center-of-gravity location due to large engine mass at the rear is the required hypersonic trim to fight the desired trajectory. This condition is most severe for lifting maneuvers. As a first step toward analyzing this problem, this paper considers the lift requirement for some basic maneuvers in the plane of a great circle. Considerations are given to optimal lift control for achieving the maximization of either the final altitude, speed or range. For the maximum-range problem, phugoid oscillation along an optimal trajectory is less severe as compared to a glide with maximum lift-to-drag ratio. An explicit formula for the number of oscillations for an entry from orbital speed is proposed.  相似文献   
54.
55.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
56.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
57.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
58.
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.  相似文献   
59.
The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is based on finding low-dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena:
  1. Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation.
  2. Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.
  相似文献   
60.
Seven healthy subjects were submitted to a 42-day head down bedrest, where leg venous compliance (venous distensibity index VDI) and leg volumes were assessed by mercury strain gauge plethysmography with venous occlusion and optoelectronic plethysmography, respectively. Plethysmographic and volometric measurements were made, before, during (at days 1, 4, 7, 14, 21, 26, 34 and 41), and after bedrest (days 1, 4, 7, 11 and 30 of the recovery period). Results showed a continuous decrease in leg volumes throughout bedrest, when VDI increased until day 26 of bedrest, and then decreased afterwards. The recovery period was characterized by a rapid return of VDI to prebedrest levels while leg volumes progressively normalised. These results showed that leg venous compliance changes are not always dependant upon skeletal muscle changes, and that factors other than size of muscle compartment are able to determine increases in leg venous compliance during long-term bedrest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号