首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2255篇
  免费   10篇
  国内免费   10篇
航空   1090篇
航天技术   817篇
综合类   10篇
航天   358篇
  2021年   22篇
  2018年   38篇
  2017年   21篇
  2016年   26篇
  2014年   48篇
  2013年   57篇
  2012年   49篇
  2011年   91篇
  2010年   64篇
  2009年   90篇
  2008年   97篇
  2007年   52篇
  2006年   43篇
  2005年   57篇
  2004年   70篇
  2003年   72篇
  2002年   37篇
  2001年   57篇
  2000年   39篇
  1999年   47篇
  1998年   67篇
  1997年   42篇
  1996年   67篇
  1995年   79篇
  1994年   55篇
  1993年   49篇
  1992年   64篇
  1991年   30篇
  1990年   19篇
  1989年   49篇
  1988年   23篇
  1987年   20篇
  1986年   21篇
  1985年   85篇
  1984年   53篇
  1983年   53篇
  1982年   60篇
  1981年   72篇
  1980年   21篇
  1979年   26篇
  1978年   26篇
  1977年   26篇
  1976年   20篇
  1975年   20篇
  1974年   20篇
  1973年   11篇
  1972年   14篇
  1970年   18篇
  1969年   19篇
  1967年   10篇
排序方式: 共有2275条查询结果,搜索用时 15 毫秒
991.
The characterisation of the aeroshape selected for the X-38 [Crew Return Vehicle (CRV) demonstrator] is presently being performed as a co-operative endeavour between NASA, DLR (through its TETRA Program), and the European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented.  相似文献   
992.
A method of finding the aircraft optimal route by means of task-oriented replacement of the functional being optimized is proposed.  相似文献   
993.
The high precision gamma-ray spectrometer (PGS) is scheduled to be launched on the Russian MARS mission in 1996, and to go into an elliptical polar orbit around Mars. The PGS consists of two high-purity germanium detectors, associated electronics, and a passive cooler and will be deployed from one of the solar panels. The PGS will measure nuclear gamma-ray emissions from the Martian surface, cosmic gamma-ray bursts, and the high-energy component of solar flares in the broad energy range from 50 keV to 8 MeV in 4096 energy channels. The first results are presented of development, integration and qualification of the instrument, both for the passive cooler and for the detector with spectrometric electronics.  相似文献   
994.
995.
SMESE: A SMall Explorer for Solar Eruptions   总被引:1,自引:0,他引:1  
The SMall Explorer for Solar Eruptions (SMESE) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman imager and a Lyman coronagraph), DESIR (an Infra-Red Telescope working at 35–80 and 100–250 μm), and HEBS (a High-Energy Burst Spectrometer working in X- and γ-rays).

The status of research on flares and coronal mass ejections is briefly reviewed in the context of on-going missions such as SOHO, TRACE and RHESSI. The scientific objectives and the profile of the mission are described. With a launch around 2012–2013, SMESE will provide a unique tool for detecting and understanding eruptions (flares and coronal mass ejections) close to the maximum phase of activity.  相似文献   

996.
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented.  相似文献   
997.
The transient X-ray pulsar A0535+26 was observed on October 4, 1980 during a high level intensity outburst with a balloon borne hard X-ray detector. High statistical quality source spectra were determined up to 100 keV. Both blackbody and Wien laws fit well the data. Pulse phase spectroscopy shows variation of temperature index between 7.5 and 8.5 keV in the off source spectra and between 7.4 and 10.5 keV in the off pulse spectra. The time averaged luminosity above 30 keV is 8×1036 erg/s.  相似文献   
998.
The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.  相似文献   
999.
ACTIVE SPACECRAFT POTENTIAL CONTROL   总被引:1,自引:0,他引:1  
Charging of the outer surface or of the entire structure of a spacecraft in orbit can have a severe impact on the scientific output of the instruments. Typical floating potentials for magnetospheric satellites (from +1 to several tens of volts in sunlight) make it practically impossible to measure the cold (several eV) component of the ambient plasma. Effects of spacecraft charging are reduced by an entirely conductive surface of the spacecraft and by active charge neutralisation, which in the case of Cluster only deals with a positive potential. The Cluster spacecraft are instrumented with ion emitters of the liquid-metal ion-source type, which will produce indium ions at 5 to 8 keV energy. The operating principle is field evaporation of indium in the apex field of a needle. The advantages are low power consumption, compactness and high mass efficiency. The ion current will be adjusted in a feedback loop with instruments measuring the spacecraft potential (EFW and PEACE). A stand-alone mode is also foreseen as a back-up. The design and principles of the operation of the active spacecraft potential control instrument (ASPOC) are presented in detail. Flight experience with a similar instrument on the Geotail spacecraft is outlined.  相似文献   
1000.
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10%, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. These measurements can be either transmitted to the ground in real time, or stored on the spacecraft tape recorder. On the ground the waveforms are Fourier transformed and displayed as frequency-time spectrogams. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.Deceased  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号