首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6060篇
  免费   15篇
  国内免费   16篇
航空   2913篇
航天技术   1816篇
综合类   191篇
航天   1171篇
  2021年   37篇
  2019年   32篇
  2018年   191篇
  2017年   151篇
  2016年   85篇
  2015年   46篇
  2014年   114篇
  2013年   125篇
  2012年   152篇
  2011年   309篇
  2010年   235篇
  2009年   315篇
  2008年   313篇
  2007年   241篇
  2006年   120篇
  2005年   187篇
  2004年   147篇
  2003年   158篇
  2002年   192篇
  2001年   208篇
  2000年   84篇
  1999年   123篇
  1998年   152篇
  1997年   106篇
  1996年   153篇
  1995年   177篇
  1994年   132篇
  1993年   88篇
  1992年   128篇
  1991年   53篇
  1990年   46篇
  1989年   105篇
  1988年   49篇
  1987年   42篇
  1986年   47篇
  1985年   174篇
  1984年   141篇
  1983年   101篇
  1982年   131篇
  1981年   158篇
  1980年   46篇
  1979年   44篇
  1978年   46篇
  1977年   44篇
  1976年   33篇
  1975年   37篇
  1974年   44篇
  1972年   32篇
  1970年   36篇
  1969年   41篇
排序方式: 共有6091条查询结果,搜索用时 62 毫秒
111.
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.  相似文献   
112.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
113.
The purpose of “Vitamin” experiment is to study the efficiency of protective substances on three biological acellular systems aqueous solutions exposed to cosmic radiation in space. The first system “LDL”is a low density lipoprotein. The second is “E2-TeBG complexe” in which estradiol (E2) is bound to its plasmatic carrier protein, testosterone-estradiol binding globulin (TeBG). The third is “pBR 322”, a plasmid. “Vitamin” experiment was accomodated in the Biopan which had been mounted on the outer surface of a Foton retrievable satellite. The experiment was exposed to space environment during 15 days. A stable temperature of about 20 °C was maintained throughout the flight. “Vitamin” experiment preliminary results are presented and discussed.  相似文献   
114.
Exposure of astronauts to microgravity leads to the loss of calcium from weightbearing bones. Prolonged exposure, e.g., during a journey to Mars, may present problems on return to Earth, with increased risk of fractures and premature osteoporosis in later life. The precise mechanisms of calcium loss have yet to be determined although a key feature is the absence of mechanical loading. Countermeasures aimed at reducing calcium loss to acceptable levels include the use of exercise, drugs, dietary modifications and inertia suits such as the Soviet "Penguin" suit. Missions of a number of years may, however, require the development of artificial gravity on a spacecraft. The country that first solves the physiological problems of man in space and, in particular, skeletal calcium loss, will almost certainly be the first to be able to put a man on Mars.  相似文献   
115.
Measurements of the wave emission of the topside ionosphere made onboard the APEX satellite using the electric component of the wave field in the 0.1–10 MHz frequency band are presented. At middle latitudes a wave intensity decrease was observed in the broad-band spectrum of the electrostatic noise at the electron cyclotron frequency. It is shown that a break in the spectrum of electrostatic modes at the electron cyclotron frequency (the absence of the plasma eigen-frequencies) may be a cause of the observed effect. The increase of the intensity at the electron cyclotron frequency in the ionospheric trough and at latitudes above the trough region as compared to middle latitudes may be explained by the capture by plasma irregularities of the electromagnetic emission of the auroral electron fluxes.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 201–208.Original Russian Text Copyright © 2005 by Izhovkina, Prutensky, Pulinets, Kiraga, Klos, Rothkael.  相似文献   
116.
We consider a relationship between the difference in spectral indices of the spectra of single hadrons and all hadrons (snglh) and the difference in the indices of the spectra of galactic cosmic ray (GCR) protons and nuclei. It is demonstrated that at the mountain level the ratio (pZ)/(snglh) is always larger than unity, if (snglh) > 0.1. From the experimental value snglh = 0.4 ± 0.05 we derive that, in the vicinity of E = 10 TeV, pZ 0.49 ± 0.06 , i.e., p 3.09 ± 0.06.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 83–87.Original Russian Text Copyright © 2005 by Grigorov, Tolstaya.  相似文献   
117.
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult.  相似文献   
118.
The present paper reports a kinetic analysis of changes of some physiological parameters, obtained from international literature, after changes in gravitational environment. The overall phenomenology of the adaptation to weightlessness is characterized by a rapid process followed by a slow one. The two processes show half time values differing by about five times. Also in the case of readaptation to gravity, after recovery on the Earth, two well resolved processes, showing different half time values, are observed. It is of interest to notice that the rate of response to weightlessness is lower than that to gravity. Of course, the half time values observed depend on the different physiological parameters considered. In any case, the experimental data suggest a general trend of many adaptive changes, that may all be described by a simple mathematical model.  相似文献   
119.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   
120.
It has been suggested that a daily intake of fluid and salt supplements may be used to prevent bone demineralization in human subjects after prolonged exposure to hypokinesia (diminished muscular activity). Thus, the objective of this investigation was to evaluate the effect of fluid and salt supplementation in the prevention of development of osteoporosis in 64 Wistar rats with an initial body weight of 339-345 g, after exposure to 90 days of hypokinesia. They divided into 4 equal groups: the first group of rats placed under ordinary vivarium conditions and served as vivarium control; the second group were also placed under ordinary vivarium conditions but received daily fluid and salt supplements; the third group were subjected to pure hypokinesia, i.e. without the use of any preventive measures; and the fourth group were submitted to hypokinesia and received daily fluid and salt supplements. For the simulation of the hypokinetic effect the experimental group of rats were kept in small, individual, wooden cages. Through the experimental period the second and fourth group of rats received 8 ml/100 g body wt water and 5 ml 100 g body wt NaCl daily. By the end of the experimental period the animals were decapitated and the spongy matter of tibia and vertebrae of the rats were examined for changes referable to osteoporosis. It was found that the daily intake of fluid and salt supplements caused an increase in the volume density of primary spongiosa of bones. It was concluded that a daily intake of fluid and salt supplements may be used to prevent the development of osteoporosis in rats subjected to prolonged motor activity restriction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号