首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4814篇
  免费   14篇
  国内免费   19篇
航空   2452篇
航天技术   1662篇
综合类   17篇
航天   716篇
  2021年   29篇
  2018年   66篇
  2017年   34篇
  2016年   39篇
  2014年   89篇
  2013年   117篇
  2012年   98篇
  2011年   167篇
  2010年   126篇
  2009年   177篇
  2008年   241篇
  2007年   123篇
  2006年   96篇
  2005年   121篇
  2004年   122篇
  2003年   153篇
  2002年   83篇
  2001年   140篇
  2000年   79篇
  1999年   117篇
  1998年   149篇
  1997年   100篇
  1996年   142篇
  1995年   179篇
  1994年   142篇
  1993年   106篇
  1992年   148篇
  1991年   68篇
  1990年   48篇
  1989年   118篇
  1988年   52篇
  1987年   45篇
  1986年   48篇
  1985年   152篇
  1984年   129篇
  1983年   95篇
  1982年   130篇
  1981年   140篇
  1980年   48篇
  1979年   61篇
  1978年   54篇
  1977年   40篇
  1976年   36篇
  1975年   52篇
  1974年   41篇
  1973年   26篇
  1972年   40篇
  1970年   30篇
  1969年   34篇
  1967年   29篇
排序方式: 共有4847条查询结果,搜索用时 801 毫秒
711.
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing a Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide onboard knowledge of highly accurate navigation products autonomously to users of TDRSS. The TONS I operational system processes Doppler data derived from scheduled forward-link S-band services to provide onboard orbit and frequency determination and time maintenance. TONS I is implemented using a stable onboard frequency reference, a Doppler measurement capability in the user transponder, and onboard navigation/signal acquisition software. The success of the TONS experiment (1992/1993), which was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, demonstrated the flight readiness of TONS I. TONS II-A provides the user with additional Doppler data derived from an S-band beacon signal, available approximately 80 percent of the time. This paper describes the TONS operational capabilities, configurations, and expected performance.  相似文献   
712.
The first European mission to Venus (Venus Express) is described. It is based on a repeated use of the Mars Express design with minor modifications dictated in the main by more severe thermal environment at Venus. The main scientific task of the mission is global exploration of the Venusian atmosphere, circumplanetary plasma, and the planet surface from an orbiting spacecraft. The Venus Express payload includes seven instruments, five of which are inherited from the missions Mars Express and Rosetta. Two instruments were specially designed for Venus Express. The advantages of Venus Express in comparison with previous missions are in using advanced instrumentation and methods of remote sounding, as well as a spacecraft with a broad spectrum of capabilities of orbital observations.  相似文献   
713.
Chromosomal intrachanges induced by swift iron ions.   总被引:1,自引:0,他引:1  
We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/micrometers, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.  相似文献   
714.
Dynamical and thermal variations of the internal structure of the Sun can affect the energy flow and result in variations in irradiance at the surface. Studying variations in the interior is crucial for understanding the mechanisms of the irradiance variations. “Global” helioseismology based on analysis of normal mode frequencies, has helped to reveal radial and latitudinal variations of the solar structure and dynamics associated with the solar cycle in the deep interior. A new technique, - “local-area” helioseismology or heliotomography, offers additional potentially important diagnostics by providing three-dimensional maps of the sound speed and flows in the upper convection zone. These diagnostics are based on inversion of travel times of acoustic waves which propagate between different points on the solar surface through the interior. The most significant variations in the thermodynamic structure found by this method are associated with sunspots and complexes of solar activity. The inversion results provide evidence for areas of higher sound speed beneath sunspot regions located at depths of 4–20 Mm, which may be due to accumulated heat or magnetic field concentrations. However, the physics of these structures is not yet understood. Heliotomography also provides information about large-scale stable longitudinal structures in the solar interior, which can be used in irradiance models. This new diagnostic tool for solar variability is currently under development. It will require both a substantial theoretical and modeling effort and high-resolution data to develop new capabilities for understanding mechanisms of solar variability.  相似文献   
715.
716.
Analysis of four-frequency satellite Doppler data has allowed the separation and measurement of frequency-dependent ionospheric contributions to the Doppler shift, providing information useful in the study of errors incurred when tracking radio signals through the ionosphere. These refraction errors affect the accuracy of navigational position fixes obtained by Doppler satellite tracking systems. Some measured ionospheric refraction errors reported here are of interest because their magnitudes are significantly greater than those heretofore predicted from theoretical considerations.  相似文献   
717.
This paper presents the results of measurements of gamma radiation with energies above 5 MeV, from the galactic anticenter region. The balloon-borne gamma ray telescope “Natalya-I”, was launched on 6 November, 1980 from the Tata Institute of Fundamental Research's Balloon Facility (Hyderabad, India) and reached ceiling altitude of 35 km. The results on the accelerator calibration of the telescope, using a “tagged” gamma ray beam are also presented.  相似文献   
718.
719.
An analysis based on statistical considerations and Monte Carlo simulations indicates that a noncoherent moving target indicator (MTI) using a linear envelope detector differs from one using a square law envelope detector. The square law envelope detector is usually described in the literature because of ease of analysis, and it is commonly stated or implied that the results are the same for the two cases because of the similar spectral characteristics of the detectors. A comparison is made between the two noncoherent MTIs and the coherent MTI in terms of clutter attenuation and MTI improvement factors.  相似文献   
720.
The IKS infrared spectro-photometer will fly on board the VEGA platforms. It is designed to characterize the size, temperature and emissivity of the Comet Halley nucleus, to identify the major gaseous components of the inner coma and to detect the emission of the cometary grains. This paper presents the “calibration” experiments required to reduce the raw data: (i) absolute wavelength calibration of the filter wheels; (ii) modeling of the internal signal, as a function of the temperature of the different sub-systems; (iii) absolute and spectral responsivities of each of the spectrometric and photometric channels, as a function of the wavelength and position of the source in the field of view. Finally, we shall indicate the expected S/N ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号