首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2455篇
  免费   10篇
  国内免费   12篇
航空   1208篇
航天技术   859篇
综合类   11篇
航天   399篇
  2021年   27篇
  2019年   13篇
  2018年   65篇
  2017年   34篇
  2016年   27篇
  2015年   16篇
  2014年   50篇
  2013年   68篇
  2012年   55篇
  2011年   99篇
  2010年   72篇
  2009年   101篇
  2008年   104篇
  2007年   62篇
  2006年   47篇
  2005年   68篇
  2004年   75篇
  2003年   75篇
  2002年   39篇
  2001年   64篇
  2000年   43篇
  1999年   50篇
  1998年   69篇
  1997年   45篇
  1996年   68篇
  1995年   82篇
  1994年   60篇
  1993年   50篇
  1992年   65篇
  1991年   30篇
  1990年   19篇
  1989年   49篇
  1988年   23篇
  1987年   20篇
  1986年   21篇
  1985年   89篇
  1984年   60篇
  1983年   56篇
  1982年   62篇
  1981年   81篇
  1980年   21篇
  1979年   26篇
  1978年   26篇
  1977年   26篇
  1976年   20篇
  1975年   20篇
  1974年   20篇
  1972年   14篇
  1970年   19篇
  1969年   19篇
排序方式: 共有2477条查询结果,搜索用时 15 毫秒
951.
Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth’s atmosphere within 100?years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100?years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.  相似文献   
952.
953.
Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships.  相似文献   
954.
955.
In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992–1993. Ulysses was 4–5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below ∼30o were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average θnBo = 67o). The reverse shocks were more oblique (average θnBo = 52o), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (∼−30° to −35°) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique.  相似文献   
956.
The Graz 2 kHz Satellite Laser Ranging (SLR) measurements allow determination of the spin axis orientation of the geodetic satellite Ajisai. The high repetition rate of the laser makes it possible to determine the epoch time when the laser is pointing directly between two corner cube reflector (CCR) rings of the satellite. Identification of many such events during a few (up to 3) consecutive passes allows to state the satellite orientation in the celestial coordinate system. Six years of 2 kHz SLR data (October 2003–October 2009) delivered 331 orientation values which clearly show precession of the axis along a cone centered at 14h56m2.8s in right ascension and 88.512° in declination (J2000.0 celestial reference frame) and with an half-aperture angle θ of 1.405°. The spin axis precesses with a period of 117 days, which is equal to the period of the right ascension of the ascending node of Ajisai’s orbit. We present a model of the axis precession which allows prediction of the satellite orientation – necessary for the envisaged laser time transfer via Ajisai mirrors.  相似文献   
957.
958.
The nanosatellite UNICubeSAT is described, carrying a Broglio Drag Balance Instrument for neutral thermosphere density in situ measurements. The aim of the mission is to contribute to the development of accurate thermosphere models, achieving in situ, real time measurements of atmosphere density, that could be exploited for global atmosphere model validation and accurate short term (1–3 days) real time space weather forecasts. The satellite is inexpensive and swarms could be easily launched operating as a distributed sensor network to get simultaneous in situ local (not orbit averaged) measurements in multiple positions and orbit heights. The nanosatellite is based on the Cubesat standard architecture, weighing about 1 kg for 1-L volume. Atmospheric drag force is measured by the displacement of light plates exposed to the incoming particle flux seen by the spacecraft, applying the original three dimensional Broglio Drag Balance concept to a single nanosatellite axis. The instrument concept and its relation to the satellite bus is depicted, showing that many long term potential measurement error sources and biases can be removed in data processing if the spacecraft is spin stabilized. The expected accuracy in density measurements is 20%. The instrument cost is a fraction of that of accurate accelerometers. The onboard systems are based on commercial off the shelf components, in accordance with the short lifetime typical of aeronomy satellites.  相似文献   
959.
Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites’ interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites—as opposed to single objects—important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state—usually leading to the 1:1 spin orbit coupling—and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.  相似文献   
960.
The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites’ surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号