首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2455篇
  免费   10篇
  国内免费   12篇
航空   1208篇
航天技术   859篇
综合类   11篇
航天   399篇
  2021年   27篇
  2019年   13篇
  2018年   65篇
  2017年   34篇
  2016年   27篇
  2015年   16篇
  2014年   50篇
  2013年   68篇
  2012年   55篇
  2011年   99篇
  2010年   72篇
  2009年   101篇
  2008年   104篇
  2007年   62篇
  2006年   47篇
  2005年   68篇
  2004年   75篇
  2003年   75篇
  2002年   39篇
  2001年   64篇
  2000年   43篇
  1999年   50篇
  1998年   69篇
  1997年   45篇
  1996年   68篇
  1995年   82篇
  1994年   60篇
  1993年   50篇
  1992年   65篇
  1991年   30篇
  1990年   19篇
  1989年   49篇
  1988年   23篇
  1987年   20篇
  1986年   21篇
  1985年   89篇
  1984年   60篇
  1983年   56篇
  1982年   62篇
  1981年   81篇
  1980年   21篇
  1979年   26篇
  1978年   26篇
  1977年   26篇
  1976年   20篇
  1975年   20篇
  1974年   20篇
  1972年   14篇
  1970年   19篇
  1969年   19篇
排序方式: 共有2477条查询结果,搜索用时 15 毫秒
921.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   
922.
In this paper, the buckling behavior of thin-walled GFRP cylindrical shells with triangular lattice patterned reinforcements formed by helical and circumferential ribs under axial force is analyzed. In this analysis, various models of composite isogrid stiffened cylindrical shells with outer diameter of 150 millimeters, shell thickness of 0.5 millimeters and height of 280 millimeters, stiffened with 6 helical and 2 circumferential ribs and all with the same material properties of shell and ribs are used. Ribs have constant section areas but different shapes and cross section profiles. The effects of these differences on buckling strengths of structures under axial load are studied. For analysis and modeling of structures, Finite Element Analysis method and ANSYS software were used. The results (elastic buckling load) for each model were derived and based on these results, ratio of buckling strengths to weight parameters were calculated for each model and were compared to results obtained from other models. The effect of profile of the ribs on the buckling of shells under axial loading can be concluded from the results. Results showed that stiffening the shells increased the buckling load from 10% up to 36% while decreased the buckling load to weight ratio to 42% up to 52% of an unstiffened shell.  相似文献   
923.
Magnetosphere with a size comparable to the ion kinetic scales is investigated by means of laboratory experiment, analytical analysis and Hall MHD simulation. In experiment a specific magnetic field was observed which is non-coplanar to dipole field, does not change sign at dipole moment inversion and could be generated only via the quadratic Hall term. Magnetopause position and plasma stand off distance were found to be profoundly different between the experimental regimes with small and large ion inertia length. In the previous studies of a mini-magnetosphere by kinetic codes such novel features were observed as absence of the bow shock and plasma stopping at the Stoermer particle limit instead of the pressure balance distance. Proposed analytical model explains these features by Hall currents which tend to cancel magnetic field convection by ions. Performed numerical simulation shows a good agreement with experiment and analytical model. It gives detailed spatial structure of the Hall field and reveals that while ions penetrate deep inside mini-magnetosphere electrons overflow around it along magnetopause boundary.  相似文献   
924.
Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ~30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ~55% of the surface habitable.  相似文献   
925.
926.
Abstract The survival strategies of one cyanobacteria colony and three terricolous lichen species from the hot subdesert of Tabernas, Spain, were studied along with topographical attributes of the area to investigate whether the protective strategies adopted by these pioneer soil colonizers are related to the environmental stressors under which they survive. A handheld Raman spectrometer was used for biomolecular characterization, while the microclimatic and topographic parameters were estimated with a Geographic Information System (GIS). We found that the survival strategies adopted by those organisms are based on different combinations of protective biomolecules, each with diverse ecophysiological functions, such as UV-radiation screening, free-energy quenching, antioxidants, and the production of different types and amounts of calcium oxalates. Our results show that the cyanobacteria community and each lichen species preferentially colonized a particular microhabitat with specific moisture and incident solar radiation levels and exhibited different adaptive mechanisms. In recent years, a number of studies have provided consistent results that suggest a link between the strategies adopted by those extremophile organisms and the microclimatic environmental parameters. To date, however, far too little attention has been paid to results from Raman analyses on dry specimens. Therefore, the results of the present study, produced with the use of our miniaturized instrument, will be of interest to future studies in astrobiology, especially due to the likely use of Raman spectroscopy at the surface of Mars. Key Words: Hot desert-Raman spectroscopy-Topography-Terricolous lichens-Cyanobacteria-Planetary exploration. Astrobiology 12, 743-753.  相似文献   
927.
The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1–7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable spacecraft would be available.  相似文献   
928.
The results of experiments with the DAKON-M convection sensor onboard the Russian orbital segment of the International Space Station are described. A comparison of the sensor measurements with the results of calculation of the quasistatic microacceleration component at the point of installation is made. For this comparison we have used three measurement intervals of the experiments in 2009, during which spacecraft were docked with the station, undocked from it, and actuation of jet engines of the attitude control system took place. When calculating microacceleration, we use the measurement data of the low-frequency MAMS accelerometer, installed on the American segment, and the telemetry data on the ISS rotational motion. This information allowed one to convert the MAMS measurements to the point of installation of the DAKON-M convection sensor. A comparison of sensor measurements with calculated microaccelerations showed sufficiently accurate coincidence between the calculated and measured data.  相似文献   
929.
This work is a continuation of the previous article and it focuses on low solar activity and modeling effort. NeQuick model uses Epstein layer formalism to model each part of the profile. We study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick2) and R (B2best/B2NeQuick 2) at Hainan station during low solar activity. The results show it is possible to improve the B2bot parameter of the NeQuick model at that region during low solar activity. Then, we use a function ?(t) with LT in different seasons to correct the B2bot formula of NeQuick 2. The correction shows that (1) By the correction formula, the B2bot of NeQuick is improved. The maximum standard deviation is improved for 9 km. (2) The correction formula is more effective in summer than in equinox and winter and performs better during early morning hours than during the rest of the day.  相似文献   
930.
Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultra-cold, degenerate (extremely dense) electron–positron (EP) plasma (containing non-relativistic, ultra-cold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. It is shown that due to the property of being equal mass of the plasma species (me=mpme=mp, where meme and mpmp are electron and positron mass, respectively), the degenerate EP plasma system supports the K-dV solitons which are associated with either fast or slow magnetosonic perturbation modes. It is also found that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of degenerate electron and positron pressures. The applications of the results in an EP plasma medium, which occurs in compact astrophysical objects, particularly in white dwarfs, have been briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号