The propagation of energetic electron flux in the solar corona is investigated with due regard for the influence of the neutralizing cold electron flux and the kinematic escape effect of the electrons with different velocities. 相似文献
Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main \"targets\" for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88% precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space). 相似文献
For systems of autonomous satellite navigation, it is proposed to use television signals of stationary television centers positioned along the flight path in the band of satellite radio coverage as sources of primary navigation information. Television signal processing allows one to determine the time instants of transit through traverses of the television centers. An algorithm of calculating the parameters of satellite motion by times of transit through traverses is developed. 相似文献
As examples of application of the technique suggested in the first part of this work, the problems of optimizing the trajectories of spacecraft transfers between circular coplanar orbits are considered in this second part. During the transfer the spacecraft is controlled by the vector of thrust of a limited-thrust jet engine. The mass consumption is minimized for a limited time of transfer. Extreme trajectories with two and three powered sections (Homan-type and bi-elliptic transfer trajectories) are numerically determined. The solution of these well-studied problems allows one to compare the results of applying the suggested technique with the results of application of other previously used techniques. 相似文献
The objective of this document Is to show the capabilities of parallel hardware-based on-line learning neural networks (NNs). This specific application is related to an on-line estimation problem for sensor validation purposes. Neural-network-based microprocessors are starting to be commercially available. However, most of them feature a learning performed with the classic back-propagation algorithm (BPA). To overcome this lack of flexibility a customized motherboard with transputers was implemented for this investigation, The extended BPA (EBPA), a modified and more effective BPA, was used for the on-line learning, These parallel hardware-based neural architectures were used to implement a sensor failure detection, identification, and accommodation scheme in the model of a night control system assumed to be without physical redundancy in the sensory capabilities. The results of this study demonstrate the potential for these neural schemes for implementation in actual flight control systems of modern high performance aircraft, taking advantage of the characteristics of the extended back-propagation along with the parallel computation capabilities of NN customized hardware 相似文献
This paper presents the concept, theory of operation, characteris tic equations, and error analysis of four wide-band monopulse techniques. The basic techniques described, which include pure amplitude monopulse, phase and amplitude monopulse (two-and three-channel configurations), and pure phase monopulse interferometer, are particularly applicable to monopulse direction finding systems that require frequency coverage over several octaves and open-loop angle bearing of several degrees. Sufficient detail and working formulas are included to permit a trade-off analysis to be made between the direction-finding techniques for selection in specific hardware applications. 相似文献
A ring-like mass exerts a well computable gravitational attraction on a material point located along a straight line, being perpendicular to the plane of the ring in its centre. In the state of weightlessness, an oscillatory movement will develop owing to this effect. The period, T, of oscillation depends on the gravity constant, on the density and dimensions of the ring, as well as on the amplitude of the oscillation. Its exact computation can be based on the determination of the gravity potential function of the ring. The oscillation has the following form: where f is the gravitational constant. is the density of the ring, r and R are the radii of the ring, z is the distance of the turning point of the oscillation from the centre of the ring, while I/r,R,z/ is an improper integral which can be computed with any desired accuracy owing to the favourable function-theoretical character of the potential. We computed the oscillation period for various possible values of the parameters and obtained time data of an order of magnitude which falls into a well observable interval.The outlined conceptual experiment for the improved determination of the gravitational constant may present, of course, many technical difficulties and error sources /e.g. the path of the oscillating point is quite unstable owing to the extremely small acting forces, electric charges and also radiation pressure might be present, the gravity field would show a gradient on the spot of the experiment, etc./. Nevertheless, it seems to be worthwhile to consider carrying out such an experiment, using the possibilities offered by modern techniques in observing distances and time. For the path distortions caused by errors, we give a few estimates, but in case of realization of the experiment, a more detailed error analysis must be made. 相似文献
The helicopter main rotor in forward flight is considered in this paper. The results for rigid blades and elastic blades are compared by the method of coupled simulation. The influence of the structural damping coefficient on the blade in-flight deformation is also considered. 相似文献
The RADiatiOn Monitor (RADOM) is a miniature dosimeter-spectrometer that flew onboard the Chandrayaan-1 lunar mission in order to monitor the local radiation environment. Primary objective of the RADOM experiment was to measure the total absorbed dose, flux of surrounding energetic particles and spectrum of the deposited energy from high energy particles both en-route and in lunar orbit. RADOM was the first experiment to be switched on after the launch of Chandrayaan-1 and was operational until the end of the mission. This paper summarizes the observations carried out by RADOM during the entire life time (22 October 2008–31 August 2009) of the Chandrayaan-1 mission and compares the measurement by RADOM with the radiation belt models such as AP-8, AE-8 and CRRESS. 相似文献
Automatic detection radars require some method of adapting to variations in the background clutter in order to control their false-alarm rate. Conventional cell-averaging techniques designed to maintain a constant false-alarm rate in Rayleigh clutter will fail to control the false-alarm rate in more severe clutter environments such as log-normal or Weibull clutter. A processor is described which is capable of maintaining false-alarm regulation in log-normal clutter and in Weibull clutter (and, under certain conditions, over the entire family of log-normal and Weibull distributions). 相似文献