首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   0篇
航空   140篇
航天   11篇
  2018年   66篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2013年   3篇
  2011年   11篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2001年   4篇
  1993年   4篇
  1992年   2篇
排序方式: 共有151条查询结果,搜索用时 0 毫秒
121.
The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.  相似文献   
122.
We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at \({\sim} 10\mbox{-cm}\) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (\({<}10\mbox{--}20~\mbox{m}\)) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of \({\sim} 20\mbox{--}43~\mbox{m}\).  相似文献   
123.
The term “ultraviolet (UV) burst” is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016–2017.  相似文献   
124.
InSight’s Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of \(\sim1~\mbox{mm}\) per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels.Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight’s Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence.  相似文献   
125.
We review the geochemical observations of water, \(\mbox{D}/\mbox{H}\) and volatile element abundances of the inner Solar System bodies, Mercury, Venus, the Moon, and Mars. We focus primarily on the inventories of water in these bodies, but also consider other volatiles when they can inform us about water. For Mercury, we have no data for internal water, but the reducing nature of the surface of Mercury would suggest that some hydrogen may be retained in its core. We evaluate the current knowledge and understanding of venusian water and volatiles and conclude that the venusian mantle was likely endowed with as much water as Earth of which it retains a small but non-negligible fraction. Estimates of the abundance of the Moon’s internal water vary from Earth-like to one to two orders of magnitude more depleted. Cl, K, and Zn isotope anomalies for lunar samples argue that the giant impact left a unique geochemical fingerprint on the Moon, but not the Earth. For Mars, an early magma ocean likely generated a thick crust; this combined with a lack of crustal recycling mechanisms would have led to early isolation of the Martian mantle from later delivery of water and volatiles from surface reservoirs or late accretion. The abundance estimates of Martian mantle water are similar to those of the terrestrial mantle, suggesting some similarities in the water and volatile inventories for the terrestrial planets and the Moon.  相似文献   
126.
The results of reconstruction of rotational motion of the Foton M-3 satellite during its uncontrolled flight in September 2007 are presented. The reconstruction was performed by processing the data of onboard measurements of the Earth’s magnetic field obtained by the DIMAC instruments. The measurements were carried out continuously throughout the flight, but the processing technique dealt with the data portions covering time intervals of a few orbital revolutions. The data obtained on each such interval were processed jointly by the least squares method with using integration of the equations of satellite motion relative to its center of mass. When processing, the initial conditions of motion and the used mathematical model’s parameters were estimated. The results of processing 16 data sets gave us complete information about the satellite motion. This motion, which began at a low angular velocity, had gradually accelerated and in five days became close to the regular Euler precession of an axisymmetric solid body. At the end of uncontrolled flight the angular velocity of the satellite relative to its lengthwise axis was 0.5 deg/s; the angular velocity projection onto the plane perpendicular to this axis had a magnitude of about 0.18 deg/s.  相似文献   
127.
The Dawn spectrometer (VIR) is a hyperspectral spectrometer with imaging capability. The design fully accomplishes Dawn’s scientific and measurement objectives. Determination of the mineral composition of surface materials in their geologic context is a primary Dawn objective. The nature of the solid compounds of the asteroid (silicates, oxides, salts, organics and ices) can be identified by visual and infrared spectroscopy using high spatial resolution imaging to map the heterogeneity of asteroid surfaces and high spectral resolution spectroscopy to determine the composition unambiguously. The VIR Spectrometer—covering the range from the near UV (0.25 μm) to the near IR (5.0 μm) and having moderate to high spectral resolution and imaging capabilities—is the appropriate instrument for the determination of the asteroid global and local properties. VIR combines two data channels in one compact instrument. The visible channel covers 0.25–1.05 μm and the infrared channel covers 1–5.0 μm. VIR is inherited from the VIRTIS mapping spectrometer (Coradini et al. in Planet. Space Sci. 46:1291–1304, 1998; Reininger et al. in Proc. SPIE 2819:66–77, 1996) on board the ESA Rosetta mission. It will be operated for more than 2 years and spend more than 10 years in space.  相似文献   
128.
Four types of optimal solutions are demonstrated to exist for transfers (time of flight is not fixed) between close near-circular coplanar orbits. One solution is realized with the help of fixed orientation of the propulsion system (PS) along a transversal in the orbital coordinate system. Another is reached at fixed orientation of the PS in the inertial coordinate system. The third and fourth types of solutions change the PS orientation in the process of executing the maneuver. Regions of existence are established for all types of solutions, and algorithms for determination of parameters of these maneuvers are suggested. The algorithms were used to calculate parameters of the maneuvers of transfer from a launching orbit to a working Sun-synchronous orbit, and to calculate the maneuvers of supporting the parameters of such an orbit in a specified range.  相似文献   
129.
The observational information on X-ray binaries that was collected with the 80 cm2 auxiliary X-ray detector onboard the COS-B gamma-ray satellite is reviewed. The results illustrate that in the study of X-ray binaries observations of long duration are extremely effective, even when using a small instrument.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号