首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   0篇
  国内免费   2篇
航空   54篇
航天技术   10篇
航天   30篇
  2018年   4篇
  2017年   1篇
  2014年   3篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   7篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   1篇
  1968年   2篇
  1967年   3篇
  1964年   1篇
排序方式: 共有94条查询结果,搜索用时 406 毫秒
51.
52.
The Suprathermal Electron (STE) instrument, part of the IMPACT investigation on both spacecraft of NASA’s STEREO mission, is designed to measure electrons from ~2 to ~100 keV. This is the primary energy range for impulsive electron/3He-rich energetic particle events that are the most frequently occurring transient particle emissions from the Sun, for the electrons that generate solar type III radio emission, for the shock accelerated electrons that produce type II radio emission, and for the superhalo electrons (whose origin is unknown) that are present in the interplanetary medium even during the quietest times. These electrons are ideal for tracing heliospheric magnetic field lines back to their source regions on the Sun and for determining field line lengths, thus probing the structure of interplanetary coronal mass ejections (ICMEs) and of the ambient inner heliosphere. STE utilizes arrays of small, passively cooled thin window silicon semiconductor detectors, coupled to state-of-the-art pulse-reset front-end electronics, to detect electrons down to ~2 keV with about 2 orders of magnitude increase in sensitivity over previous sensors at energies below ~20 keV. STE provides energy resolution of ΔE/E~10–25% and the angular resolution of ~20° over two oppositely directed ~80°×80° fields of view centered on the nominal Parker spiral field direction.  相似文献   
53.
54.
A special set of solutions governing the motion of a particle, subject to the gravitational attractions of the Earth, the Moon, and, eventually, the Sun, is discussed in this paper. These solutions, called resonant orbits, correspond to a special motion where the particle is in resonance with the Moon. For a restricted set of initial conditions the particle performs a resonance transition in the vicinity of the Moon. In this paper, the nature of the resonance transition is investigated under the perspective of the dynamical system theory and the energy approach. In particular, using a new definition of weak stability boundary, we show that the resonance transition mechanism is strictly related to the concept of weak capture. This is shown through a carefully computed set of Poincaré surfaces, at different energy levels, on which both the weak stability boundary and the resonant orbits are represented. It is numerically demonstrated that resonance transitioning orbits pass through the weak stability boundaries. In the second part of the paper the solar perturbation is taken into account, and the motion of the resonant orbits is studied within a four-body dynamics. We show that, for a wide class of initial conditions, the particle escapes from the Earth–Moon system and targets an heliocentric orbit. This is a free ejection called a ballistic escape. Astrodynamical applications are discussed.  相似文献   
55.
56.
57.
Microbialites can have complex morphologies that preserve clues to ancient microbial ecology. However, extracting and interpreting these clues is challenging due to both the complexity of microbial structures and the difficulties of connecting morphology to microbial processes. Fenestrate microbialites from the 2521±3 Ma Gamohaan Formation, South Africa, have intricate structures composed of three distinct microbial structures: steeply dipping supports (surfaces defined by organic inclusions), more shallowly dipping supports with diffuse organic inclusions below them, and draping laminae. In polished slabs, shallowly dipping supports with diffuse organic inclusions show apparent dips from 27° to 60°, and supports without associated zones of diffuse inclusions dip 75° to 88°, which suggests a distinction between support types based on orientation. However, dips exposed in polished slabs are apparent dips, and three-dimensional analysis is required for analysis of true dips. Through the Keck Center for Active Visualization in Earth Sciences (KeckCAVES), we used locally developed software that controls a three-dimensional environment with head and hand tracking (an "immersive environment") to visualize and interpret virtual microbialite data sets. Immersive environments have not penetrated into standard scientific work processes ("workflows") due to their high costs, steep learning curves, and low productivity for users. By contrast, our suite of software tools allowed us to develop a personalized scientific workflow that provides a complete path from initial ideas to characterization of fenestrate microbialites' features. Results of three-dimensional analysis of fenestrate microbialites show that supports with inclusions dip 65° to 75°, whereas supports without inclusions dip 85° to 90°. These results demonstrate that all supports have very steep dips, and a 10° dip gap exists between supports with and without inclusions, which suggests they grew in fundamentally different ways. Results also emphasize how valuable three-dimensional analysis is when combined with a comprehensive workflow for understanding intricate structures such as fenestrate microbialites.  相似文献   
58.
59.
Possible methods of increasing the sensitivity capabilities for determining heat-transfer rates associated with wind tunnel testing have been investigated. Techniques utilizing surface thermocouples of conventional thermocouple materials do not provide the necessary temperature sensitivity to low heat-transfer rates. This need for increased sensitivity has resulted in development and evaluation of surface thermocouples fabricated from semiconductor materials. Calibration of the semiconductor surface thermocouple has disclosed temperature sensitivity on the order of 35 times that of chromel-constantan thermocouples. This increased sensitivity has established confidence in the potential value of this concept and further investigation and evaluation are presently being conducted.  相似文献   
60.
Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号